藏族人群如何适应高原极端环境目前还并不清楚,而代谢作为重要的表型,在保持个体正常生物学功能中发挥了重要作用。已有研究表明一些代谢小分子可以通过调控能量代谢、氧化应激等生物学过程以适应外界的极端环境。鉴于此,项目通过研究藏族人群相比平原人群的特有的代谢特征,有望发现人体代谢与极端环境适应的关系,进而以代谢的视角研究藏族人群的高原适应机制。该数据是项目实施过程中产生的代谢组数据,目前的数据包括了30例平原人群的代谢组数据;利用这批数据与后续的代谢组数据进行联合分析,可以用来研究高原藏族人群在高原低氧环境下的代谢特征。本数据集是中国现代人群代谢组数据v1.0的更新与延续
李功华
作为世界的“第三极”,青藏高原的生态敏感性和脆弱性极高,同时面临人类活动和放牧活动加剧。在本研究中,人类活动强度评估首先选取8个反映人类活动强度的因子,包括放牧强度,夜间灯光指数,人口密度,国内生产总值(GDP)密度,耕地比例,归一化植被指数(NDVI)的变化率,距离道路的距离以及距离居民点的距离,然后采用熵权法确定各因子的权重,最后通过空间叠置法获得1990、1995、2000、2005、2010和2015年共6期青藏高原农牧区人类活动强度数据集。通过人类活动强度空间数据集的制备,我们的研究将有助于探索人类干扰对青藏高原高寒生态系统的影响,并在区域生态系统管理和可持续发展方面为政府决策提供有效支持。
刘世梁, 孙永秀, 刘轶轩, 李明琦
该数据集由2020年8月青藏高原野外考察期间无人机航拍所得,数据大小为10.1 GB,包括1500余张航片。拍摄地点主要包括拉萨、山南、日喀则等地区道路沿线、居民点及周边地区。航片主要反映了当地土地利用/覆被类型、设施农业分布、草地盖度情况等信息,航片均具有经纬度和海拔信息,可为土地利用/覆被遥感解译工作提供了较好的验证信息,还可用于植被覆盖度的估算工作,为研究区域土地利用研究提供了较好的参照信息。
吕昌河, 刘亚群
青藏高原农业发展总体区划图以乡镇为基本划分单元,综合考虑气候、地形、植被类型和盖度、土地利用类型及占比、自然保护区分布,以及生态保护重点和农业发展方向,提出了青藏高原面向生态保护的农牧业调控分区方案,将青藏高原划分为8个区(3个以生态保护为重点农牧业限控区、5个农业适度发展区)和23个小区,分区命名采用保护+农牧业发展方向的方式。该分区图旨在有效保护生态大基础上,适度发展青藏高原农牧业,可为保障生态安全屏障功能和可持续管理提供参考信息。
吕昌河, 刘亚群
数据内容主要包括青藏高原可可西里至拉萨板块部分岩浆岩全岩的主微量数据。样品分布地区主要有可可西里湖、南羌塘果干加年、都古尔,以及冈底斯纳如松多、萨嘎县等地区。岩石样品包括橄榄白榴岩、石英二长岩、闪长岩和花岗岩等主微量元素累计300余件,对青藏高原岩石圈演化研究具有重要意义。数据主要来自已经发表的文章或正在接受。主量元素测试采用XRF光谱方法,微量测试采用ICP-MS。数据质量高度可信,测试单位包括中国科学院广州地球化学研究所国家重点实验室等。数据发表在高级别期刊,包括《Geology》、《BSA Bulletin》以及《Journal of Petrology》等。
唐功建, 王军, 齐玥, 周金胜, 但卫
采用样点法对岗日嘎布山沿海拔梯度的鸟类进行调查,按400米海拔跨度对考察区域分别设置海拔带,北坡从波密县通麦镇至嘎隆寺,由低到高设置了5个海拔带,南坡从墨脱县背崩乡解放大桥至嘎隆拉,由低到高设置了8个海拔带,获取岗日嘎布西北段南北坡鸟类多样性和分布数据,以期对理解这一区域鸟类多样性的形成和维持机制方面取得重大突破,进一步探讨气候变化对鸟类多样性的影响与适应策略、物种多样性对全球变化的响应与保护策略等关键科学问题。
杨晓君
本数据集包含了雅砻江逆冲带的磷灰石和锆石的(U-Th)/He年龄数据,磷灰石的裂变径迹(AFT)年龄数据,该数据集后续会持续更新。第一部分数据是来自雅砻江逆冲带腹地分支断裂--玉农希断裂的磷灰石和锆石的 He以及磷灰石裂变径迹数据。第二部分数据是来自雅砻江逆冲断裂带的分支断裂锦屏山-木里断裂,包括磷灰石和锆石的 He年龄数据。数据结果较为集中,很好的约束了雅砻江逆冲带的演化,为探讨其在高原扩展过程中作用提供高质量的年代学依据。
张会平
基于“暴露性-敏感性-适应性”的脆弱性评估框架,构建了青藏高原农牧区脆弱性评估指标体系。指标体系数据包括气象数据、土壤数据、植被数据、地形数据和社会经济数据5大类,共计12个数据指标,主要来原于国家青藏高原科学数据中心和中国科学院资源与环境科学数据中心。基于6位相关领域专家的问卷调查,利用层次分析法确定指标权重,最终形成涉及青藏高原农牧区生态暴露性、敏感性、适应性和生态脆弱性4个1公里网格数据。数据可为青藏高原生态脆弱区识别提供参考。
战金艳, 滕艳敏, 刘世梁
北半球过去千年(1000-2000 AD)、年分辨率、2°空间分辨率气温场数据集(距平值)。本数据集通过古气候数据同化方法产生,同化的模型算子是MPI-ESM-P,观测数据为396条年分辨率的代用资料,同化方法为集合平方根滤波算法(EnSRF)。同化重建的气温场和气温观测资料、代用资料重建的气温具有很好的一致性(平均相关系数>0.6, p-value < 0.01)。数据可为研究过去千年北半球尺度和区域尺度气温变化提供高质量的基础数据。
方苗, 李新, CHEN Hans W., CHEN Deliang
利用粒度分解的方法对新疆博斯腾湖全新世钻孔BST04H岩芯沉积物样品粒度数据进行分析,得到对湖泊水动力变化敏感的湖相悬移粉砂组分。通过结合现代过程的研究发现,该湖相悬移粉砂组分粒径变化可以指示湖泊水动力变化,该组分粒径越大,指示当时湖泊水动力越强,即入流、外流水量越大,湖泊水位越高,反之亦然。该数据可以用来指示博斯腾湖全新世以来湖泊水动力的演化过程,为研究该区域的气候、水文水资源变化提供理论支持。该方法仅适用于流域开放、且沉积稳定的湖泊沉积物分析,当沉积相发生较大变化时不宜使用该方法。
谢海超
2020年11月,利用网捕法和电捕法采集了青海省青藏高原鱼类,采样区域包含了青海省主要水系。共采集了30个样点,其中12个样点,采集到了鱼类标本685尾,包括高原鳅属裂腹鱼类。本项工作是“建立青藏高原湖泊系统水生生物检测方法”计划中的一个环节,即采用传统的鱼类调查数据以生成湖泊系统的物种列表,后将以此结合高原台面多个湖泊系统的环境水样所获取的高通量分子数据,并测试可视参数(湖泊大小、隔离、地理位置和光谱特性)是否能用于预测水生生物多样性。
刘淑伟
采用夹捕、笼捕和陷阱法调查非飞行小型兽类多样性与垂直分布格局。采用红外相机调查法获取地栖大中型野生动物的出现数据。小型兽类调查累计采集日数达8000个,采集标本526号,组织样品1052份;红外相机调查获得野生动物照片4218张,记录到大中型哺乳动物25种。小型兽类数据包含物种、多度、体重等性状数据、环境梯度数据等,可为理解环境梯度-物种多度-物种性状间的关联及垂直梯度哺乳动物群落构建的生态过程提供数据支撑。红外相机数据主要收集珍稀濒危野生动物的出现数据,可补充区域生物多样性本底,同时为生物多样性热点区及保护关键区识别提供科学依据。
李学友
本数据以流域为单位,对祁连山各流域的河流陡峭指数、凹度指数、流域面积、面积高程积分、侵蚀系数、侵蚀速率、降水等地貌特征数据进行提取和收集。其中河流陡峭指数与凹度指数是基于SRTM (Shuttle Radar Topography Mission) 3 弧秒 DEM数据提取的,流域侵蚀速率数据源于Palumbo et al. (2010) 和Palumbo et al. (2011),降水数据源自Geng et al. (2017)。为增加数据的可信度,数据中还给出了置信度为95%时每个流域的河流陡峭指数的范围。该数据为分析祁连山地貌特征与构造格局的关系奠定了基础。
胡小飞, 张亚男
该数据集包含了2018年1月1日至2018年12月31日的蒸渗仪观测数据。站点位于河北省怀来县东花园镇,下垫面为玉米。观测点的经纬度是115.7880E, 40.3491N,海拔480m。 蒸渗仪的采集频率是1Hz,发布数据为10min输出数据。蒸渗仪为圆柱形结构,表面积为1m2,土柱埋深1.5m,蒸散量观测精度为0.01mm。蒸渗仪安装有两台,一台保持裸土(lysimeter_1),另一台在生长季(5月10日-9月15日)为玉米下垫面(lysimeter_2)。蒸渗仪内还安装有土壤温湿度探头、土壤水势探头和土壤热流板。土壤温度传感器埋设深度为5cm、30cm、50cm、100cm、140cm;土壤水分传感器埋设深度为2cm、10cm、20cm、40cm;土壤热流板埋设在地下10 cm处;土壤水势传感器埋设深度为30cm和140cm处。观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)删除了维护期间造成的观测异常的数据;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30; 蒸渗仪发布的观测数据包括:日期/时间Date/Time,称重质量(I.L_1_WAG_L_000(Kg)、I.L_2_WAG_L_000(Kg)),渗漏质量(I.L_1_WAG_D_000(Kg)、I.L_2_WAG_D_000(Kg)),土壤热通量(Gs_1_10cm、Gs_2_10cm)(W/m2),多层土壤水分(Ms_1_5cm、Ms_1_10cm、Ms_1_30cm、Ms_1_50cm、Ms_1_100cm、Ms_2_5cm、Ms_2_10cm、Ms_2_30cm、Ms_2_50cm、Ms_2_100cm)(%),多层土壤温度(Ts_1_5cm 、Ts_1_30cm、Ts_1_50cm、Ts_1_100cm、Ts_1_140cm、Ts_2_5cm 、Ts_2_30cm、Ts_2_50cm、Ts_2_100cm、Ts_2_140cm)(℃);数据以*.xls格式存储。
刘绍民, 朱忠礼, 徐自为
该数据集包含了2019年1月1日至2019年12月31日的蒸渗仪观测数据。站点位于河北省怀来县东花园镇,下垫面为玉米。观测点的经纬度是115.7880E, 40.3491N,海拔480m。 蒸渗仪的采集频率是1Hz,发布数据为10min输出数据。蒸渗仪为圆柱形结构,表面积为1m2,土柱埋深1.5m,蒸散量观测精度为0.01mm。蒸渗仪安装有两台,一台保持裸土(lysimeter_1),另一台在生长季(5月10日-9月15日)为玉米下垫面(lysimeter_2)。蒸渗仪内还安装有土壤温湿度探头、土壤水势探头和土壤热流板。土壤温度传感器埋设深度为5cm、30cm、50cm、100cm、140cm;土壤水分传感器埋设深度为2cm、10cm、20cm、40cm;土壤热流板埋设在地下10 cm处;土壤水势传感器埋设深度为30cm和140cm处。观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)删除了维护期间造成的观测异常的数据;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-6-10 10:30; 蒸渗仪发布的观测数据包括:日期/时间Date/Time,称重质量(I.L_1_WAG_L_000(Kg)、I.L_2_WAG_L_000(Kg)),渗漏质量(I.L_1_WAG_D_000(Kg)、I.L_2_WAG_D_000(Kg)),土壤热通量(Gs_1_10cm、Gs_2_10cm)(W/m2),多层土壤水分(Ms_1_5cm、Ms_1_10cm、Ms_1_30cm、Ms_1_50cm、Ms_1_100cm、Ms_2_5cm、Ms_2_10cm、Ms_2_30cm、Ms_2_50cm、Ms_2_100cm)(%),多层土壤温度(Ts_1_5cm 、Ts_1_30cm、Ts_1_50cm、Ts_1_100cm、Ts_1_140cm、Ts_2_5cm 、Ts_2_30cm、Ts_2_50cm、Ts_2_100cm、Ts_2_140cm)(℃),土壤水势(TS_1_30(hPa)、TS_1_140(hPa)、TS_2_30(hPa)、TS_2_140(hPa));数据以*.xls格式存储。
刘绍民, 朱忠礼, 徐自为
该数据集依据中分辨率长时间序列遥感影像Landsat,通过影像融合、遥感解译、数据反演等多种方式获得青藏高原1990/1995/2002/2005/2010/2015六期生态系统类型情况分布图,作出25年(1990-2015)青藏高原生态本底图,空间参考系统为Krasovsky_1940_Albers,空间分辨率为1000m。青藏高原各类生态系统面积统计表明,1990-2015年间,林地、草地面积略有减少,城镇用地、农村居民点及其他建设用地面积增加,河流、湖泊等水体面积增加,永久性冰川积雪面积减少。该图集可用于青藏高原生态工程的规划、设计及管理,并可作为生态系统现状的基准,用于阐明青藏高原重大生态工程建设的时空格局,揭示青藏高原生态系统格局和功能的变化规律和区域差异。
赵慧, 王小丹
青藏高原是陆地表面中低纬度地区多年冻土分布最为广泛的地区,大量研究表明,青藏高原多年冻土的存在和变化强烈影响着区域乃至全球的水文、生态和气候系统。但由于青藏高原高寒缺氧、生存条件恶劣、交通极不便利,数据资源非常贫乏,尤其是在极高海拔的多年冻土区,这种状态不仅严重地限制了对于该区域气候、环境和冻土等诸多方面的研究和理解,也严重限制了适应于该区域遥感反演算法的研发、各类陆面乃至于地球系统模型的模拟和改进,而且也限制了该区域经济发展和国家战略的规划。过去几十年,我们研究团队在青藏高原多年冻土区建立了综合观测网络,展开了对多年冻土地温、活动层水热以及气象因子的系统监测,形成了能够基本覆盖青藏高原高平面的、与多年冻土有关的多要素观测数据。本数据集包括在这一区域的6个自动气象观测站、12个活动层及84个钻孔长时间序列观测数据,主要观测要素包括气象(气温、降水、风速、比湿等)、土壤水热、活动层厚度及冻土温度等观测数据。各观测数据在收集和处理过程中都已经过了严格的质量控制。本数据集面向多学科背景的科学家发布(如:冰冻圈、水文学、生态学和气象科学等),将进一步促进青藏高原水文模型、陆面过程模型和气候模型的验证、发展和改进。
赵林, 胡国杰, 邹德富, 吴通华, 杜二计, 刘广岳, 肖瑶, 李韧, 庞强强, 乔永平, 吴晓东, 孙哲, 幸赞品, 盛煜, 赵拥华, 史健宗, 谢昌卫, 汪凌霄, 王翀, 程国栋
1)数据内容: 古地磁数据、磁学指标数据、常量元素百分比数据、化学风化指数,能够建立大红沟剖面古地磁年代框架,恢复地质历史时期降水变化和化学风化历史。 2)数据来源及加工方法 数据来源为实验数据。 古地磁数据:采用小型汽油钻钻取2x2x2厘米的圆柱形样品,在磁屏蔽室内用低温超导磁力仪进行测量。 磁学数据:将野外采集样品用研钵磨成细颗粒装入2x2x2无磁塑料盒内,用卡帕桥磁化率仪、脉冲磁力仪和旋转磁力仪进行测试。 全样和分粒级常量元素质量百分含量和化学风化指数数据:先将全样和分粒级样品用醋酸和双氧水进行碳酸盐和有机质去除前处理过程,后用压力器将其压成直径约4cm,厚约8mm的圆饼状,最后进行XRF荧光测试分析。 3)数据质量 样品采集、实验处理均按照严格的标准进行,所获数据质量可靠。 4) 数据应用成果及前景 应用这套数据发表SCI论文3篇,其中一篇为Ni文章。
聂军胜
数据包含兰州大学地质科学与矿产资源学院古生物教研室2019年至2020年期间采自于甘肃、青海、云南的新生代植物大化石;化石均由团队成员赴野外采集而来,并在实验室中通过常规化石修复方法与角质层实验方法进行加工;化石保存基本完好,其中部分保存有角质层,可以进行实验并一步观察到气孔等微细结构,有助于分类鉴定及恢复古气候条件;对这些植物大化石的研究有助于深入了解青藏高原东部新生代古环境、古气候、古地理变化以及认识当时的植被面貌。
杨涛
该数据集包含了2019年1月1日至2019年12月31日的40m塔自动气象站观测数据。站点位于河北省怀来县东花园镇,下垫面为水浇地玉米。观测点的经纬度是115.7923E, 40.3574N,海拔480m。 自动气象站安装在40m塔上,采集频率为30s,且10min输出一次。观测要素包括7层空气温度、相对湿度(3m、5m、10m、15m、20m、30m、40m),朝向为正北;7层风速(3m、5m、10m、15m、20m、30m、40m),风向(10 m),朝向为正北;气压(安装在防水箱内);雨量(3 m);四分量辐射和光合有效辐射(4 m),朝向为正南;红外表面温度(8 m),支臂朝向正南,探头朝向是垂直向下;土壤温湿度探头埋设在气象塔正南方1.5m处,土壤温度探头埋设深度为2cm、4cm、10cm、20cm、40cm、80cm、120cm和160 cm处,土壤水分传感器埋设深度为2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm;平均土壤温度埋在地下2, 4cm;土壤热流板(3块)埋设在地下6 cm处。 观测数据的处理与质量控制:(1)确保每天1440个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-6-10 10:30。有疑问的数据用红色字体标注。 自动气象站发布的数据包括:日期/时间Date/Time,空气温度(Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m)(℃),相对湿度(RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m)(%),风速(Ws_3m, Ws_5m, Ws_15m, Ws_20m, Ws_30m, Ws_40m)(m/s),气压(Press)(hpa),降水(Rain)(mm),四分量辐射(DR、UR、DLR、ULR、Rn)(W/m2),光合有效辐射(PAR)(umol/s/m2),地表辐射温度(IRT_1、IRT_2)(℃),土壤热通量(Gs_1、Gs_2、Gs_3)(W/m2)、 多层土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(%)、多层土壤温度(Ts_2cm 、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(℃)、平均土壤温度TCAV(℃)。 观测试验或站点信息请参考Guo et al.(2020),数据处理请参考Liu et al. (2013)。
刘绍民, 肖青, 徐自为, 柏军华
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件