若尔盖湿地观测点始海拔 3435 米,位于四川省若尔盖县花湖湿地(102°49′09″E, 33°55′09″N),下垫面为典型的高寒泥炭沼泽湿地,植被、水体和泥炭层发育良好。本数据集为2017-2019年若尔盖湿地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射。
孟宪红, 李照国
玛曲草地观测点始建于 2005 年,海拔 3434 米,位于距离玛曲县城以南约 18公里的河曲马场(102°08′45″E,33°51′50″N),下垫面为典型的发育良好的高寒草原,属于季节性冻土区。本数据集为2017-2020年黄河源区玛曲草地观测站点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
鄂陵湖是青藏高原最大的淡水湖泊,与邻近的扎陵湖一起构成了黄河源头的“姊妹湖”,并入选了国际重要湿地名录,也是三江源国家公园的核心区。本数据集为中国科学院若尔盖高原湿地生态系统研究站2017-2020年黄河源区鄂陵湖草地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度(2020年为比湿)、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
本数据集是一个包含接近35年(1984-2018)的全球高分辨率光合有效辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于生态过程模拟和全球碳循环的理解。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据、MERRA-2气溶胶数据以及MODIS反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来生态过程模拟的研究和全球二氧化碳通量的估算。
唐文君
1) 青藏高原地面气象驱动数据集(2019-2020),包括地表温度(Land surface temperature)、地表降水率(Mean total precipitation rate)、下行短波辐射(Mean surface downward long-wave radiation flux)以及下行长波辐射(Mean surface downward short-wave radiation flux)4个气象要素。 2) 该数据集以ERA5再分析数据为基础,辅以MODIS NDVI、MODIS DEM、FY3D MWRI DEM数据产品。通过多元线性回归方法对ERA5再分析数据进行降尺度处理,最后通过重采样生成。 3) 青藏高原地面气象驱动数据集(2019-2020)各数据要素均以TIFF格式存储,时间分辨率包括(每日、每月、每年),空间分辨率统一为0.1°×0.1°。 4) 本数据方便不会使用.nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 杜宝隆
中亚的生态系统脆弱,自然灾害频发,水资源短缺,冰川加速融化,是气候变化敏感区之一。在评估该地区的脆弱性、影响性和适应性时,急需高分辨率的气候预估数据集。为此,我们对来自CMIP5的三个偏差订正后的全球气候模式(MPI-ESM-MR、CCSM4和HadGEM2-ES),在中亚地区开展了9千米的动力降尺度,继而生产了一个中亚高分辨率气候预估数据集,将其命名为HCPD-CA(High-resolution Climate Projection Dataset in Central Asia)。它的历史时段是1986-2005,未来时段是2031-2050,排放情景是RCP4.5。这个数据集有4个静态变量和10个常被用于驱动生态和水文模型的气象要素。静态变量有地形高度(HGT, m)、土地利用类型(LU_INDEX, 21 categories)、陆地水体(LANDMASK, 1代表陆地, 0代表水体)和土壤类型(ISLTYP, 16 categories)。10个气象要素是日降水量(PREC,mm/day)、2米日平均/最高/最低温(T2MEAN/T2MAX/T2MIN,K)、2米日平均相对湿度(RH2MEAN,%)、10米日平均维向和经向风(U10MEAN/V10MEAN,m/s)、日平均向下短波/长波辐射(SWD/LWD,W/m2)和日平均地表气压(PSFC,Pa)。评估结果显示:这个数据产品在描述中亚各个气象要素的平均态上有很高的质量,这保证了其可用性。未来气候变化的主要特征是:升温剧烈(年均温升高1.62-2.02℃),向下短波和长波辐射显著增强,其他气象要素变化很小。HCPD-CA数据集可被用于评估未来气候变化对中亚的多方面影响,特别是在生态和水文系统上。
邱源
充分了解中国温带半干旱草地蒸散发的时空变化,可以提高我们对全球半干旱区气候、水文和生态过程的认识。本研究基于区域内13个站点的涡度相关系统观测数据,结合气象及遥感数据,利用机器学习方法(支持向量机),生产了年限为1982-2015年,空间分辨率为1km,时间分辨率为8天的长序列中国温带半干旱草地蒸散发数据集。该数据集在站点实测数据的验证和流域水量平衡的对比中,均表现较好。(详细过程请参阅参考文献)
雷慧闽
This file contains the datasets used in a manuscript published in JGR Biogeosciences (Nieberding, F., Wille, C., Ma, Y., Wang, Y., Maurischat, P., Lehnert, L., and Sachs, T.: Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem, Journal of Geophysical Research: Biogeosciences, 126, e2021JG006441, doi:10.1029/2021JG006441, 2021.). The manuscript contains all the details on how the data was generated and processed and the corresponding code was published in the supplementary material.
Felix Nieberding, 马耀明, Christian Wille, Lukas Lehnert, Yuyang Wang, Philipp Maurischat, Weiqiang Ma, Torsten Sachs
地表太阳入射辐射(Surface Solar Irradiance,SSI)是FY-4A L2定量反演产品之一,覆盖范围为全圆盘,无投影,空间分辨率为4km,时间分辨率可达15min(20180921开始全天共40个观测时次,除每个整点时次的观测外,每3hr整点前后15min各有一次观测),光谱范围为0.2µm~5.0µm。产品输出要素包括总辐照度、水平面直接辐照度、散射辐照度,有效测量范围为0~1500 W/m2。FY-4A SSI产品在覆盖范围、空间分辨率、时间连续性、输出要素等方面质的提升为进一步开展其在太阳能、农业、生态、交通等专业气象服务中的精细化应用提供了可能。目前研究结果表明,与地基观测相比,FY-4A SSI 产品在中国地区的整体相关性在0.75以上,可用于中国地区太阳能资源评估。
申彦波, 胡玥明, 胡秀琴
陆地实际蒸散发(ETa)是陆地生态系统的重要组成部分,它连接着水文、能量和碳循环。然而,准确监测和理解青藏高原(TP)实际蒸散发(ETa)的时空变化仍然非常困难。在此,利用MOD16-STM模型,在土壤属性、气象条件和遥感数据集的支持下,对青藏高原多年(2000-2018年)月度ETa进行了估算。估算出的ETa与9个通量塔的测量结果相关性非常好,均方根误差(平均RMSE=13.48 mm/月)和平均偏差(平均MB=2.85 mm/月)较低,相关系数(R=0.88)和一致性指数(IOA=0.92)较高。2000年至2018年,整个TP和东部TP(Lon>90°E)的空间平均ETa显著增加,增速分别为1.34 mm/年(P<0.05)和2.84 mm/年(P<0.05),而西部TP(Lon<90°E)未发现明显趋势。ETa及其组分的空间分布不均匀,从东南向西北TP递减。东部ETa呈显著上升趋势,西南部ETa全年呈显著下降趋势,尤其是冬春两季。土壤蒸发(Es)占总ETa的84%以上,其时间趋势的空间分布与年平均ETa相似。春季和夏季的ETa变化幅度和速率最大。陆表ETa的多年平均年值(面积2444.18×10^3 km2)为376.91±13.13 mm/年,相当于976.52±35.7 km3/年。整个TP(包括所有高原湖泊,面积2539.49×10^3 km2)的年平均蒸发水量约为1028.22±37.8 km3/年。新的ETa数据集有助于研究土地覆被变化对水文的影响,有助于对整个TP的水资源管理。
马耀明, 陈学龙, 袁令
本数据集是一个包含34年(1983.7-2017.6)的全国高分辨率地表太阳辐射数据集,其分辨率为10公里,数据单位为W/㎡。该数据集是基于以ISCCP-HXG云产品为主要输入的全球高分辨率(3小时,10公里)地表太阳辐射数据集(1983-2017)上,通过地理加权回归方式,融合全国2261个气象台站日照时数反演的地表太阳辐射站点数据而生成的全国地表太阳辐射分布数据。验证并和其他全球卫星辐射产品比较表明,该数据集在长期趋势模拟上比GEWEX-SRB、CMSAF-CLARA-A2、ISCCP-HXG卫星辐射产品的精度要高。本数据可为陆地表面过程模拟的水文生态学的长期变化应用和研究中提供有利的数据支持。
冯飞, 王开存
本数据集包含2001-2018年青藏高原月平均地表实际蒸散发量,空间分辨率为0.1度。数据集主要以卫星遥感数据(MODIS)和再分析气象数据(CMFD)作为输入,利用地表能量平衡系统模型(SEBS)计算得到。在计算湍流通量的过程中引入了次网格地形拖曳参数化方案,提高了对地表感热通量和潜热通量的模拟。另外,利用青藏高原6个湍流通量站的观测数据对模型输出的蒸散发量进行了验证,显示出了较高的精度。该数据集可用于研究青藏高原陆气相互作用和水循环特征。
韩存博, 马耀明, 王宾宾, 仲雷, 马伟强, 陈学龙, 苏中波
黑河流域近地表大气驱动数据,是采用Weather Research and Forecasting(WRF)模式制备的黑河流域逐时0.05°× 0.05°包括2m气温、地表气压、2m水汽混合比、辐射、10m风场和累积降水等近地表大气要素的驱动数据。通过与15个中国气象局常规自动气象站(CMA)站点逐日观测资料和两期黑河流域生态-水文过程综合遥感观测联合试验(WATER和HiWATER)的站点逐时观测资料在不同时间尺度上进行验证,得出以下结论:2m地表气温、地表气压和相对湿度都是比较可信的,尤其是2m地表气温和地表气压,平均误差都很小且相关系数都达到0.96以上;向下短波辐射与WATER站点观测数据的相关性达到0.9以上;降水资料通过降雨和降雪两种相态与观测资料在不同时间尺度和空间尺度上进行验证,降雨与观测资料在年、月、日和时尺度上吻合得很好,与观测资料在年和月尺度上的相关系数高达0.94和0.84;降雪与观测资料在月尺度上的相关性达到0.78,与积雪覆盖率MODIS遥感产品的空间分布相当吻合,峰值分布也一致。液态和固态降水的验证表明WRF模式能够在地形复杂而干旱的黑河流域进行降尺度分析,所模拟的资料能够满足流域尺度水文建模和水资源平衡研究。 2013年提供了2000-2012年数据。 2016年更新了2013-2015年数据。 2019年更新了2016-2018年数据。 2022年更新了2019-2021年数据。
潘小多
The data set contains nearly 15 years of eddy covariance data from an alpine steppe ecosystem on the central Tibetan Plateau.The data was processed following standardized quality control methods to allow for comparability between the different years of our record and with other data sets. To ensure meaningful estimates of ecosystem atmosphere exchange, careful application of the following correction procedures and analyses was necessary: (1) Due to the remote location, continuous maintenance of the eddy covariance (EC) system was not always possible, so that cleaning and calibration of the sensors was performed irregularly. Furthermore, the high proportion of bare soil and high wind speeds led to accumulation of dirt in the measurement path of the infrared gas analyzer (IRGA). The installation of the sensor in such a challenging environment resulted in a considerable drift in CO2 and H2O gas density measurements. If not accounted for, this concentration bias may distort the estimation of the carbon uptake. We applied a modified drift correction procedure following Fratini et al. (2014) which, instead of a linear interpolation between calibration dates, uses the CO2 concentration measurements from the Mt. Waliguan atmospheric observatory as reference time series. (2) We applied rigorous quality filtering of the calculated fluxes to retain only fluxes which represent actual physical processes. (3) During the long measurement period, there were several buildings constructed in the near vicinity of the EC system. We investigated the influence of these obstacles on the turbulent flow regime to identify fluxes with uncertain land cover contribution and exclude them from subsequent computations. (4) We calculated the de-facto standard correction for instrument surface heating during cold conditions (hereafter called sensor self heating correction) following Burba et al. (2008) and a revision of the original method following Frank and Massman (2020). (5)Subsequently, we applied the traditional and widely used gap filling procedure following Reichstein et al. (2005) to provide a more complete overview of the annual net ecosystem CO2 exchange.(6) We estimated the flux uncertainty by calculating the random flux error (RE) following Finkelstein and Sims (2001) and by using the standard deviation of the fluxes used for gap filling(NEE_fsd) as a measure for spatial and temporal variation.
Felix Nieberding, 马耀明, Christian Wille, Gerardo Fratini, Magnus Ole Asmussen, 王玉阳, 马伟强, Torsten Sachs
太阳总辐射和直接辐射采用国产辐射表(TBQ-4-1,TBS-2,China)测量,温湿度采用自动气象站(HOBO weather station, Model H21, Onset Company, USA)测量。本数据为太阳辐射和气象要素数据,包括太阳总辐射和直接辐射,波长范围270-3200nm,单位W/m2。温湿度和水汽压单位分别为℃、%、hPa。太阳辐射和气象要素数据来源于数据提供者的测量。数据覆盖时间为2013-2016年。该数据集可以用于中国亚热带地区的太阳辐射及其变化机制等相关研究。
白建辉
中亚地区气温和辐射数据时间分辨率为月尺度,空间分辨率分别为0.5度和0.05度,采用GCS_WGS_1984投影坐标系统。其中,辐射数据计算采用了GLDAS的下行短波辐射、空气温度数据和空气水汽压数据、MOD11C3的地表温度/发射率数据、MCD43C3地表反照率数据和ASTER_GEDv4.1比辐射率数据计算得到;温度数据计算采用了MOD06_L2云产品和MOD07_L2大气剖面数据计算得到。本数据基于先进的遥感算法,充分利用目前精度较高的遥感数据和产品,区别于传统的气候模式对气候要素的估算原理。本数据可用于中亚地区水资源时空变化特征、农业水资源供需关系分析和水资源开发潜力评估等。
宋进喜, 蒋晓辉
本数据集是一个包含接近36年(1983.7-2018.12)的全球高分辨率地表太阳辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于水文建模、地表建模和工程应用。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据以及MODIS气溶胶和反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比ISCCP-FD、GEWEX-SRB和CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来地表过程模拟的研究和光伏发电的应用。
唐文君
基于WRF模式,以ERA5再分析资料为初始和边界场,通过动力降尺度的方法,初步获得了青藏高原高分辨率低层大气结构和地气交换数据集。该数据集时间范围为2014年8月1日-8月31日,时间分辨率1小时,水平范围25oN-40oN,70oE-105oE,水平分辨率为0.05°。数据格式为NetCDF,每一小时数据输出一个文件,文件以日期命名。低层大气结构数据包含温度、相对湿度、水汽混合比、位势高度、经向风、纬向风气象要素,垂直方向为34层等压面;地气交换数据集包含地表接收的向上/向下短波辐射、向上/向下长波辐射、地表感热和通量、2米气温和水汽混合比、10米风等。该数据集可对青藏高原天气过程和气候环境研究提供数据支撑。
马舒坡
太阳总辐射及吸收和散射性物质衰减的总辐射为采用国际上通用的太阳辐射表(LI200SZ,LI-COR, Inc., USA)测量获得。本测量测量数据为总太阳辐射,包括直射和漫反射的太阳辐射,波长范围400-1100nm。测量结果单位为W/m2,在自然采光下典型误差为± 3%(入射角60°以内)。北极Sodankylä 站的数据来源于与站点合作和网站下载等。北极Sodankylä 站数据覆盖时间更新到2018年。
白建辉
该数据集包含了黑河流域地表过程综合观测网下游四道桥站的大孔径闪烁仪通量观测数据。下游四道桥站架设了一台BLS900型号的大孔径闪烁仪,北塔为接收端,南塔为发射端。观测时间为2018年1月1日至2018年12月31日。站点位于内蒙古额济纳旗,下垫面是柽柳、胡杨、裸地和耕地。北塔的经纬度是101.137E,42.008N,南塔的经纬度是101.131E,41.987N,海拔高度约873m。大孔径闪烁仪的有效高度25.5m,光径长度是2350m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(Cn2>7.58E-14);(2)剔除解调信号强度较弱的数据(Average X Intensity<1000);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,选取Thiermann and Grassl(1992)的稳定度普适函数,详细介绍请参考Liu et al. (2011, 2013)。 关于发布数据的几点说明:(1)下游LAS数据缺失时刻以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H_LAS :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件