土壤水分是地气交互作用的重要边界条件,是全球观测系统提出的关键气候变量之一;植被光学厚度是微波辐射传输过程中衡量植被衰减特性的物理量,在表征植被水分与生物量动态变化中具有重要作用。 本数据集使用多通道协同反演算法获取SMAP观测的土壤水分与植被光学厚度。该算法利用参数间的自约束关系与通道间的理论转换关系进行地表参数反演,反演过程不依赖于其他辅助数据,并适用于多种不同载荷配置。本数据集的土壤水分反演结果包含了融化期的土壤水分含量与冻结期的液态水含量;同时反演了水平和垂直两个极化的植被光学厚度,是全球第一套具有极化差异的L波段植被光学厚度产品。 本数据集基于国际土壤水分观测网络、美国农业部及研究室自建发布的共19个土壤水分密集观测站网(其中包含9个SMAP核心验证站点以及SMAP尚未使用的10个密集观测站点)以及被广泛使用的土壤气候分析网络SCAN进行验证,结果发现MCCA土壤水分反演结果精度优于其它SMAP产品。
赵天杰, 彭志晴, 姚盼盼, 施建成
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
本数据集是一个包含接近35年(1984-2018)的全球高分辨率光合有效辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于生态过程模拟和全球碳循环的理解。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据、MERRA-2气溶胶数据以及MODIS反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来生态过程模拟的研究和全球二氧化碳通量的估算。
唐文君
本数据集是2019年9月川藏铁路沿线典型植被无人机高光谱观测数据,使用的是大疆M600 Resonon成像系统的机载光谱仪。包括2019年在拉萨的草原区域观测的高光谱数据,自带经纬度。高光谱调查时基本为晴天。飞行前进行了白板校准;采集数据时设有靶标(即适于草地的标准反光布),用于光谱校准;设有地面标志点(即有字母的泡沫板照片),并记录了每个标志点的经纬度坐标,用于几何精确校准。无人机高光谱相机记录的dn值,可使用Spectronon Pro软件转换为反射率。高光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
周广胜, 汲玉河, 吕晓敏, 宋兴阳
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
基于青藏高原土壤温湿度观测网玛曲站点建立的地基L波段微波辐射计观测系统(ELBARA-III,由欧洲航空局提供),本数据集囊括了水平和垂直极化的L波段亮温数据,地表及以下不同层土壤湿度和温度数据,地表通量(如感热、潜热、碳通量),气象要素数据(如降水、上下行长波/短波辐射、空气温度和湿度、气压)以及植被叶面积指数LAI和土壤性质等辅助数据。此多年尺度的数据集可用于提高对陆面过程、微波辐射过程的理解,验证SMOS和SMAP卫星亮温观测和土壤湿度反演结果,校验微波辐射传输模型中的假设条件,验证陆面模式输出以及再分析资料,反演土壤物理性质,量化陆-气间的水、碳、能量交换,并将帮助定量化地球系统模型中参数化方案的偏差和不确定性,从而提出相应改进方案。 ELBARA-III双极化亮温数据可通过测量的辐射计电压和校准的内部噪声温度计算得到。该数据质量可靠,其质量控制主要通过:1)对辐射计输出的原始电压数据(以800Hz采样频率)进行直方图检验,利用统计指标过滤射频干扰对ELBARA-III微波信号数据的影响;2)检查辐射计进行天空辐射测量时两天线端口的电压值是否相似,天线电缆有无损耗;3)分析仪器内部温度、主动冷源温度和环境温度;4)分析不同入射角度的双极化亮温的特点。 - 时间分辨率:30分钟 - 空间分辨率:入射角为40°~ 70°,间隔为5°,观测覆盖范围为3.31 m^2~ 43.64 m^2 - 测量精度:亮温,1 K;土壤水分,0.001 m^3 m^-3;土壤温度,0.1 °C - 单位:亮温,K;土壤水分,m^3 m^-3;土壤温度,°C /K
Bob Su, 文军
数据集包括2015年11月27日- 2016年3月26日阿勒泰基站(lon:88.07, lon: 44.73)地面被动微波亮温、多角度亮温、10分钟四分量辐射和雪温、雪坑日观测数据和逐时气象数据。 日雪坑参数包括:积雪分层、分层厚度、密度、粒度、温度。 这些数据存储在5个NetCDF文件中,TBdata.nc, TBdata-multiangle.nc, Ten-minute 4 component radiation and snow temperature.nc, Hourly meteorological and soil data.nc and Daily snow pit data.nc,以及readme.doc。 TBdata.nc 为六通道双偏振微波辐射计RPG-6CH-DP自动采集的两偏振三个通道的亮度温度。内容包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 TBdata-multiangle.nc为两种极化的3个通道的7组多角度亮度温度。 包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 The ten-minute 4 component radiation and snow temperature. nc 为4组分辐射和层状雪温度。 内容包括:年、月、日、时、分、SR_DOWN、SR_UP、LR_DOWN、LR_UP、T_Sensor、ST_0cm、ST_5cm、ST_15cm、ST_25cm、ST_35cm、ST_45cm、ST_55cm。 The hourly meteorological and soil data.nc为每小时天气数据和分层土壤数据。内容包括年、月、日、时、Tair、Wair、Pair、Win、SM_10cm、SM_20cm、Tsoil_5cm、Tsoil_10cm、tsoil_15cm、Tsoil_20cm。 The daily snow pit data.nc为人工雪坑数据。观测时间为当地时间上午8:00-10:100。内容包括年、月、日、雪深、thickness_layer1、thickness_layer2、thickness_layer4、thickness_layer5、thickness_layer6、Long_layer1、Short_layer1、Long_layer2、Short_layer2、Long_layer3、Short_layer4、Long_layer5、Short_layer5、Long_layer6、short_layer6、Stube、snow shovel_0-10、 雪铲_10-20、雪铲_20-30、雪铲_30-40、雪铲_40-50、雪叉_10、雪叉_15、雪叉_20、雪叉_25、雪叉_30、雪叉_35、雪叉_40、雪叉_45、雪叉_50、形状1、形状2、形状3、形状4、形状5。
戴礼云
该数据集包含2014年07月23日至2014年08月18日在黑河下游混合林站和超级站观测的热像仪组分温度数据。观测地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。在混合林站和超级站分别使用Testo890-2(热红外图像:640 × 480,可见光2048 × 1536)和Testo875-2i(热红外图像:160 × 120,可见光640 × 480)热像仪,以通量塔为中心,在10m高度处,拍摄塔周围的地表亮温和可见光图像。在混合林站的观测方向为东北、东、东南、西南和西北,在超级站的观测方向为东北、东南、西南和西北。观测时间范围主要为晴空日期的10:00至16:00;各次的观测时间为整点和MODIS、Landsat 8过境时;8月4日的拍摄为配合航空飞行,观测间隔约为10min。
李明松, 马晋
该数据集包含2014年07月22日至2016年07月19日在黑河下游混合林站和超级站观测的组分温度数据。测量地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。所使用的红外辐射计型号为SI-111,数采为CR800。混合林站使用两支传感器分别观测光照胡杨(南侧)和阴影胡杨(北侧)的组分温度。两支传感器架设高约5m,距目标约1m,水平观测。超级站使用两支传感器分别观测裸土和柽柳的组分温度。观测裸土的传感器架设高度约2m,观测天顶角约45°;观测柽柳的传感器架设高度约1m,距被测目标约0.5m,水平观测。
周纪, 李明松, 马晋
该数据集是玛多地区2016年7月、8月、9月的植被指数(NDVI),基于高分一号的多光谱数据计算得到,空间分辨率为16m。对高分一号数据进行镶嵌、转投影、裁切等处理,然后在7月、8月、9月中每个月进行最大化合成。
李飞, 张志军
本数据集为基于Landsat卫星影像获取的喜马拉雅中段波曲流域1976、1991、2000、2010年四期冰川、冰湖的矢量数据。 数据源来自Landsat遥感影像 1976:LM21510411975306AAA05、LM21510401976355AAA04 1991:LT41410401991334XXX02、LT41410411991334XXX02 2000:LE71410402000279SGS00、LE71400412000304SGS00、LE71410402000327EDC00、LE71410412000327EDC00 2010:LT51400412009288KHC00、LT51410402009295KHC00、LT51410412009311KHC00、LT51410402011237KHC00。 从各期遥感影像上人工提取冰川、冰湖边界。 冰川、冰湖边界提取误差估计为0.5个像元。 数据文件: Glacial_1976:1976年冰川矢量数据 Glacial_1991:1991年冰川矢量数据 Glacial_2000:2000年冰川矢量数据 Glacial_2010:2010年冰川矢量数据 Glacial_Lake_1976:1976年冰湖矢量数据 Glacial_Lake_1991:1991年冰湖矢量数据 Glacial_Lake_2000:2000年冰湖矢量数据 Glacial_Lake_2010:2010年冰湖矢量数据 冰湖矢量数据字段包括: 编号、名字、经纬度、海拔、面积、朝向、冰湖类型、长度、宽度、与冰川的距离
王伟财
青藏高原湖泊动态数据集采用美国陆地资源卫星(Landsat)遥感数据为主,采用波段比值与阈值分割方法制作,数据覆盖时间从1984年到2016年,时间分辨率为5年一期,覆盖范围为青藏高原,空间分辨率为30m。水体面积提取方法采用波段比值(B4/B2)或者水体指数(MNDWI)为主,构建分类树,算法构建考虑水体的光谱特征在时间和空间上的变化,并且考虑水体所处的空间为主的坡度、坡向信息调整决策树的阈值。长时间序列星载卫星数据来自Landsat MSS、TM、ETM+和OLI等系列传感器。水体信息提取的最小单元为2*2个像元,小于0.36*10^-2Km²的水体全部剔除。通过高分辨率遥感数据提取的水体信息以及目视解译确定的水体检验点的验证表明青藏高原水体面积信息的总体精度优于95%。数据以shape文件保存,投影方式为Albers投影,中央经线为105 °,双标准纬线纬度为25 °和47 °。
宋开山, 杜嘉
该NDVI数据集是由NASA EOSDIS LP DAAC 和美国地质调查 USGS EROS共同发布的第六版MODIS均一化植被指数产品(2001-2016)。该产品的时间分辨率是16天,空间分辨率0.05度。该版本是在原有1公里分辨率的NDVI产品(MYD13A2)基础上生成的气候模拟格点(CMG)数据产品。 请在致谢中以下方式说明该数据的来源: The MOD13C NDVI product was retrieved from the online in courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, The [PRODUCT] was (were) retrieved from the online [TOOL], courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota.
NASA
本数据为盈科绿洲农田、湿地、戈壁、沙漠与荒漠观测的一个生长周期内的植被覆盖度数据集。数据观测从2012年5月25日开始到9月14日结束,7月下旬之前每5天观测1次,之后10天观测1次。 测量仪器与原理: 采用数码相机拍照的方法测量了盈科绿洲的农田、湿地、戈壁、沙漠与荒漠的典型地物的植被覆盖度。样方的设计、照片拍摄方法和数据处理方法都经过一定的分析和考虑。 具体分几条进行描述: 0. 测量仪器:简易观测架搭配数码相机,将数码相机置于支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1. 样方设置和“真值”获取:玉米等低矮植被样方大小10×10米,果树样方30米×30米。每次测量时沿两条对角线依次拍照,共取9张照片(当地表覆盖非常均一时也有少于9张的情况),均匀分布在样方内。9张相片处理得到各自覆盖度之后取平均,最终得到一个样方的覆盖度“真值”。 2. 拍摄方法:针对低矮植被如玉米,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;针对较高植被如果树,在树冠下面从下向上拍摄照片,叠加配合对树冠下地表低矮植被从上向下的拍摄,得到植株附近的覆盖度,再拍摄植株之间非树冠投影区域的低矮植被,计算植株间隙的覆盖度。最后通过树冠投影法,获得树冠的平均面积。根据垄行距离计算植株树冠下与植株间隙的面积比例,加权获得整个样方的覆盖度。 3. 数据处理方法:采用一种自动分类方法,具体见“参考文献”第3条文献(Liu et al., 2012)。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 配套数据: 在记录表中文字记录了植被的种类、株高、垄宽、行宽、拍摄高度信息,同时附有数码相机拍摄的场景照片和田埂照片(农田)。 数据处理: 基于数字图像里面的分类方法,对植被和非植被像元分类后得到相片代表样方的植被覆盖度。
穆西晗, 黄帅, 马明国
该NDVI数据集是最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长序列(1981-2015)均一化植被指数产品,版本号3g.v1。 该产品的时间分辨率是每月两次,空间分辨率1/12度。时间跨度1981年7月至2015年12月。该产品为共享数据产品,可直接从ecocast.arc.nasa.gov下载。 详情请参考https://nex.nasa.gov/nex/projects/1349/
NCAR
本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2013年5月19日开始,9月15日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 超级站:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.1.2其它四个站:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 其它四个站:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 玉米:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.1.2芦苇:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 芦苇:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。
耿丽英, 家淑珍, 李艺梦, 马明国
在2012年夏季LiDAR和WIDAS飞行期间,地面同步开展地面基站差分GPS的连续观测,获取同步的GPS静态观测数据,用于支持航空飞行数据的同步解算。 测量仪器: TRIMBLE R8 GNSS系统2套。 中国中纬ZGP8001套 测量时间和地点: 2012年7月19日,EC矩阵LiDAR飞行,在MJWXB(毛家湾西北)和SBMZ(什八民子)两个基站同时观测 2012年7月25日,上游葫芦沟小流域和天姥池小流域LIDAR飞行,在XT夏塘观测,中游张掖城区校验场LIDAR飞行,在MJWXB(毛家湾西北)观测 2012年7月26日,上游葫芦沟小流域和天姥池小流域LIDAR飞行,在XT夏塘观测,中游张掖城区校验场LIDAR飞行,在HCZ(火车站)观测 2012年8月1日,上游东西支WIDAS飞行,在YNG(野牛沟)观测 2012年8月2日,中游EC矩阵试验区WIDAS飞行,在HCZ(火车站)观测 2012年8月3日,中游EC矩阵试验区WIDAS飞行,在MJWXB(毛家湾西北)观测 数据格式: 差分预处理前原始数据格式。
刘向锋, 马明国
2012年6月28-29日在盈科绿洲与花寨子荒漠PLMR样方进行了机载飞行地面同步观测。PLMR(Polarimetric L-band Multibeam Radiometer)是双极化(H/V)的L波段微波辐射计,中心频率1.413 GHz,带宽24 MHz,分辨率1 km (相对航高3 km),有6个beam同时观测,入射角为±7º,±21.5º,±38.5º,灵敏度<1K。飞行主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证被动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 观测区位于张掖绿洲南缘-安阳滩荒漠过渡带,张(张掖)-大(大满)公路西侧,南北跨龙渠干渠,分为两部分,西南方向为1 km×1 km的荒漠样方,由于荒漠较为均质,在此1 km样方内采集5个点(四周各1点及中心点,实际测量过程中,可在沿路行走过程中多测几个点)的土壤水分,四个角点除对角线方向外,互相间隔600 m,西南角角点为花寨子荒漠站,便于与气象站数据比较。在东北侧,选择了面积2.4 km×2.4 km的大样方针对绿洲下垫面开展同步观测。样方的选择依据主要是考虑地表覆盖代表性、尽量避开民居和大棚、穿越绿洲农田以及南边的部分荒漠、可达性、观测(路途消耗)时间,以期获得与PLMR观测的亮度温度的比较。 考虑到PLMR观测的分辨率,同步观测中,东西方向以160 m为间隔,采集了16条样线(东西分布),每条线80 m间隔共31个点(南北方向),使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量。 测量内容: 获取了样方上约500个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。植被参数观测选择在一些具有代表性的土壤水分采样点开展,完成了株高和生物量(植被含水量)的测量。 注:28号观测从11:00AM左右开始,完成约1/3工作量,由于PLMR仪器问题和降雨的双重原因,4:00PM被迫停止观测。剩余工作量29号10:30AM-5:30PM完成。观测日期正值该区域内农田大面积灌溉,导致观测人员前行困难,田块难以进入,观测点位与预设点位有偏差。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中;植被采样信息记录在EXCEL表格中。
王树果, 李新
植被叶绿素含量的测量是为了获取不同EC站点以及不同类型植被叶绿素的含量,并实现遥感反演的叶绿素产品的真实性检验。 观测仪器: 野外采样,室内丙酮萃取法测量。 测量方式: 为了分析株高对叶绿素含量的影响,根据玉米株高记录选择不同的样方进行采样,总共选择了11个玉米样方。为了比较不同植被类型的叶绿素含量,又选取了通量矩阵内EC1下的三种蔬菜类型以及湿地的芦苇样方。总共选取了19个不同的样方进行分析,所采样方交于河西学院生命科学学院实验室,进行叶绿素萃取,分别提取出所选样方的叶绿素a、叶绿素b以及总叶绿素的含量。 数据内容: 叶绿素a、叶绿素b以及总叶绿素的含量 观测时间: 2012年7月8号
家淑珍
本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2014年5月10日开始,9月11日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2014年5月10日-9月11日, 7月20日以前每5天观测一次,7月20后每10天观测一次,共做了17次观测,具体观测时间如下; 超级站:2014-5-10、2014-5-15、2014-5-20、2014-5-25、2014-5-30、2014-6-10、2014-6-15、2014-6-20、2014-6-25、2014-6-30、2014-7-5、2014-7-10、2014-7-15、2014-7-20、2014-8-5、2014-8-17、2014-9-11 1.1.2其它四个站:观测时间段2014年5月20日-9月15日,每10天观测一次,共做了11次观测,具体观测时间如下; 其它四个站:2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2014年5月10日-9月11日, 7月20日以前每5天观测一次,7月20后每10天观测一次,共做了17次观测,具体观测时间如下; 超级站:2014-5-10、2014-5-15、2014-5-20、2014-5-25、2014-5-30、2014-6-10、2014-6-15、2014-6-20、2014-6-25、2014-6-30、2014-7-5、2014-7-10、2014-7-15、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.1.2芦苇:观测时间段2014年5月20日-9月15日,每10天观测一次,共做了11次观测,具体观测时间如下; 2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。
于文凭, 耿丽英, 李艺梦, 谭俊磊, 马明国
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件