本数据为东南亚地区2015年的地表类型数据,空间分辨率为30米,数据类型为NetCDF,变量名为“land cover type”。该数据基于FROM-GLC数据加工而成,通过对原始影像的拼接、裁剪得到覆盖东南亚的地表类型数据,剔除东南亚地区不存在的雪冰等下垫面类型并重新整合图例。修改下垫面类型编码生成包含东南亚的地表类型数据。该数据提供耕地、森林、草地、灌木、湿地、水体、不透水面、及裸地共8种下垫面的信息。数据总体精度为71% (Gong et al., 2019),可为水文模型、区域气候模式等提供东南亚地区的下垫面信息。
刘俊国
1)数据内容:泛第三极地区基于遥感反演的主要生态环境数据,包含PM2.5浓度、森林覆盖率、EVI、土地覆被、CO2等指标;2)数据来源及加工方法:PM2.5数据来源于the Atmospheric Composition Analysis Group Web site at Dalhousie University、森林覆盖度数据来源于MODIS Vegetation Continuous Fields (VCF),CO2数据来源于ODIAC Fossil fuel emission dataset,EVI数据来源于MODIS Vegetation Index Products,土地覆被数据来源ESA CCI Land cover。提取出泛第三极65个国家和地区,其他未进行加工;3)数据质量描述:数据2000-2015年数据时间序列较好;4)数据应用成果及前景:可用于生态环境变化分析。
李广东
青藏高原的水土资源匹配数据,由站点气象数据(2008-2016年,国家气象数据共享网)经过彭曼公式计算得出的潜在蒸散发数据,利用土地利用的不同土地类型,根据下垫面影响系数计算现有土地利用下的蒸散发量;以及气象数据中的站点降雨数据插值得到的降雨数据,根据两者差值得到水土资源匹配系数。实际降雨与现有土地利用条件下的需水量之间的差值来反映水土资源的匹配性,数值越大匹配性越好。水土资源的匹配情况的空间分布能为进一步了解青藏高原的农牧业资源情况做铺垫。
董凌霄
该数据集包含了2018年长江源区人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年8月黄河源区(扎陵湖北面)人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年可可西里人工采集的土地覆盖地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
中国土地利用现状遥感监测数据库是在国家科技支撑计划、中国科学院知识创新工程重要方向项目等多项重大科技项目的支持下经过多年的积累而建立的覆盖全国陆地区域的多时相土地利用现状数据库。 数据集包括1980年代末期,1990年、1995年、2000年、2005年、2010年,2015年七期,数据生产制作是以各期Landsat TM/ETM遥感影像为主要数据源,通过人工目视解译生成。数据缺少南海部分岛屿数据。 空间分辨率1公里,投影参数:Albers_Conic_Equal_Area 中央经线105,标准纬线1: 25,标准纬线2: 47。 中国土地利用现状遥感监测数据库是目前我国精度比较高的土地利用遥感监测数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。 土地利用类型包括耕地、林地、草地、水域、居民地和未利用土地6个一级类型以及25个二级类型。
中国科学院资源环境科学数据中心(http://www.resdc.cn/)
本数据来源于“中国1:10万土地利用数据”。中国1:10万土地利用数据是由中国科学院“八五”重大应用项目《全国资源环境遥感宏观调查与动态研究》组织了中国科学院所属19个研究所的遥感科技队伍,以卫星遥感为手段,在三年内基于Landsat MSS,TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全国分为6个一级类(耕地、林地、草地、水域、城乡、工矿、居民用地和未利用土地),31个二级类。这是目前我国精度最高的土地利用数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。
刘纪远, 庄大方, 王建华, 周万村, 吴世新
该土地覆盖类型产品是欧空局气候变化行动第二阶段产品,其空间分辨率为300米,时间覆盖范围为1992-2015. 空间覆盖范围纬向-90~90度,经向-180~180度,坐标系统为地理坐标WGS84.土地覆盖产品该地表覆盖的分类依据联合国粮食农业组织土地覆盖分类系统(LCCS, Land Cover Classification System)。 该数据用于科研目的需要致谢ESA CCI Land Cover project,并且将发表的文章发送给contact@esalandcover-cci.org
徐希燕
一、概述 本数据集以卫星遥感为手段,基于Landsat MSS, TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全区域分为6个一级分类(耕地、林地、草地、水域、城乡、工矿、居民用地与未利用土地),31个二级分类。 二、数据处理说明 数据集基于Landsat MSS、TM与ETM遥感数据为底图,数据集投影设置为Alberts等积投影,将比例尺放在1:24000下进行人机交互目视解译,数据集存储形式为ESRI coverage格式。 三、数据内容说明 本数据集采用分层土地覆盖分类系统,共分为6个一级分类(耕地、林地、草地、水域、城乡、工矿、居民用地与未利用土地),31个二级分类。 四、数据使用说明 主要应用于国家土地资源调查、气候变化、水文、生态研究工作中。
薛娴, 杜鹤强
一、概述 本数据集以卫星遥感为手段,基于Landsat MSS, TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全区域分为6个一级分类(耕地、林地、草地、水域、城乡、工矿、居民用地与未利用土地),31个二级分类。 二、数据处理说明 数据集基于Landsat MSS、TM与ETM遥感数据为底图,数据集投影设置为Alberts等积投影,将比例尺放在1:24000下进行人机交互目视解译,数据集存储形式为ESRI coverage格式。 三、数据内容说明 本数据集采用分层土地覆盖分类系统,共分为6个一级分类(耕地、林地、草地、水域、城乡、工矿、居民用地与未利用土地),31个二级分类。 四、数据使用说明 主要应用于国家土地资源调查、气候变化、水文、生态研究工作中。
薛娴, 杜鹤强
一、概述 本数据集以卫星遥感为手段,基于Landsat MSS, TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全区域分为6个一级分类(耕地、林地、草地、水域、城乡、工矿、居民用地与未利用土地),31个二级分类。 二、数据处理说明 数据集基于Landsat MSS、TM与ETM遥感数据为底图,数据集投影设置为Alberts等积投影,将比例尺放在1:24000下进行人机交互目视解译,数据集存储形式为ESRI coverage格式。 三、数据内容说明 本数据集采用分层土地覆盖分类系统,共分为6个一级分类(耕地、林地、草地、水域、城乡、工矿、居民用地与未利用土地),31个二级分类。 四、数据使用说明 主要应用于国家土地资源调查、气候变化、水文、生态研究工作中。
薛娴, 杜鹤强
一、概述 本数据集以卫星遥感为手段,基于Landsat MSS, TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全区域分为6个一级分类(耕地、林地、草地、水域、城乡、工矿、居民用地与未利用土地),31个二级分类。 二、数据处理说明 数据集基于Landsat MSS、TM与ETM遥感数据为底图,数据集投影设置为Alberts等积投影,将比例尺放在1:24000下进行人机交互目视解译,数据集存储形式为ESRI coverage格式。 三、数据内容说明 本数据集采用分层土地覆盖分类系统,共分为6个一级分类(耕地、林地、草地、水域、城乡、工矿、居民用地与未利用土地),31个二级分类。 四、数据使用说明 主要应用于国家土地资源调查、气候变化、水文、生态研究工作中。
薛娴, 杜鹤强
此数据为黑河流域中上游的SWAT情景模拟数据。情景包括历史趋势情景(HT)、生态保护情景(EP)、严格生态保护情景(SEP)、经济发展情景(ED)和快速经济发展(RED)情景。 首先利用Dyna_CLUE模型,模拟不同情景下的土地利用变化,然后将不同情景下模拟的土地利用图导入到SWAT模型中,模拟黑河流域上游出口(莺落峡)和中游出口(正义峡)的日径流、月径流情景数据(假设其它条件一样)。时间段为2011-2030年。数据格式为excel格式。
南卓铜, 张凌
本数据来源于“中国1:10万土地利用数据”。中国1:10万土地利用数据是由中国科学院“八五”重大应用项目《全国资源环境遥感宏观调查与动态研究》组织了中国科学院所属19个研究所的遥感科技队伍,以卫星遥感为手段,在三年内基于Landsat MSS,TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全国分为6个一级类(耕地、林地、草地、水域、城乡、工矿、居民用地和未利用土地),31个二级类。这是目前我国精度最高的土地利用数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。
刘纪远, 庄大方, 王建华, 吴世新, 周万村
本数据来源于“中国1:10万土地利用数据”。中国1:10万土地利用数据是由中国科学院“八五”重大应用项目《全国资源环境遥感宏观调查与动态研究》组织了中国科学院所属19个研究所的遥感科技队伍,以卫星遥感为手段,在三年内基于Landsat MSS,TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全国分为6个一级类(耕地、林地、草地、水域、城乡、工矿、居民用地和未利用土地),31个二级类。这是目前我国精度最高的土地利用数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。
刘纪远, 庄大方, 王建华, 吴世新, 周万村
本数据来源于“中国1:10万土地利用数据”。中国1:10万土地利用数据是由中国科学院“八五”重大应用项目《全国资源环境遥感宏观调查与动态研究》组织了中国科学院所属19个研究所的遥感科技队伍,以卫星遥感为手段,在三年内基于Landsat MSS,TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全国分为6个一级类(耕地、林地、草地、水域、城乡、工矿、居民用地和未利用土地),31个二级类。这是目前我国精度最高的土地利用数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。
刘纪远, 庄大方, 王建华, 吴世新, 周万村
本数据来源于“中国1:10万土地利用数据”。中国1:10万土地利用数据是由中国科学院“八五”重大应用项目《全国资源环境遥感宏观调查与动态研究》组织了中国科学院所属19个研究所的遥感科技队伍,以卫星遥感为手段,在三年内基于Landsat MSS,TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全国分为6个一级类(耕地、林地、草地、水域、城乡、工矿、居民用地和未利用土地),31个二级类。这是目前我国精度最高的土地利用数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。
王建华, 刘纪远, 庄大方, 周万村, 吴世新
本数据来源于“中国1:10万土地利用数据”。中国1:10万土地利用数据是由中国科学院“八五”重大应用项目《全国资源环境遥感宏观调查与动态研究》组织了中国科学院所属19个研究所的遥感科技队伍,以卫星遥感为手段,在三年内基于Landsat MSS,TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全国分为6个一级类(耕地、林地、草地、水域、城乡、工矿、居民用地和未利用土地),31个二级类。这是目前我国精度最高的土地利用数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。
王建华, 刘纪远, 庄大方, 周万村, 吴世新
本数据来源于“中国1:10万土地利用数据”。中国1:10万土地利用数据是由中国科学院“八五”重大应用项目《全国资源环境遥感宏观调查与动态研究》组织了中国科学院所属19个研究所的遥感科技队伍,以卫星遥感为手段,在三年内基于Landsat MSS,TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全国分为6个一级类(耕地、林地、草地、水域、城乡、工矿、居民用地和未利用土地),31个二级类。这是目前我国精度最高的土地利用数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。
王建华, 刘纪远, 庄大方, 周万村, 吴世新
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件