该物候数据基于青藏高原2000-2015年MOD13A2数据(时间分辨率为16天,空间分辨率为1km),利用TIMESAT软件中分段高斯函数拟合NDVI曲线,采用动态阈值方法提取春季物候、秋季物候以及生长季长度,其中春季物候和秋季物候的阈值分别设置为0.2和0.7。此物候数据进行了掩膜处理。其中,掩膜规则为:1)必须满足NDVI的最大值出现在6-9月份之间;2)6-9月份NDVI均值不能小于0.2;3)冬季的NDVI均值不能超过0.3。
俎佳星, 张扬建
植被调查数据是研究生态系统结构与功能必不可少的数据。青藏高原地区蕴含广袤的草地生态系统,主要包括高寒草甸、高寒草地、以及高寒荒漠化的草地。由于独特的地理位置以及高海拔缺氧的环境条件,在藏北高原的群落调查数据较为稀少。本数据集包括2019年藏北样带上47个采样点的的地上生物量和盖度数据,采样时间为7-8月。样方大小为50cm×50cm,烘干后称取植物干重。本数据集可用于生产力的空间分析与模型的校准工作。
张扬建, 朱军涛
植被指数(NDVI, Normalized Difference Vegetation Index)可以准确反映地表植被覆盖状况。目前,基于SPOT/VEGETATION以及MODIS等卫星遥感影像得到的NDVI时序数据已经在各尺度区域的植被动态变化监测、土地利用/覆被变化检测、宏观植被覆盖分类和净初级生产力估算等研究中得到了广泛的应用。EVI类似于归一化差异植被指数(NDVI),可用于量化植被绿度。然而,EVI对一些大气条件和树冠背景噪声进行了校正,并且在植被茂密的地区更为敏感。它包含一个“L”值来调整树冠背景,“C”值作为大气阻力系数,以及来自蓝色波段(B)的值。这些增强功能允许将指数计算R和NIR值之间的比率,同时在大多数情况下降低背景噪声、大气噪声和饱和度。本研究工作主要是对NDVI和EVI数据进行后处理,通过转换投影坐标系、数据融合、最大值合成法、剔除异常值和剪裁后给出较为可靠的2013年和2018年的青藏高原的植被情况。
叶爱中
数据包括青藏高原与西北干旱区33个湖泊表层沉积物中植物DNA的原始测序文件。我们使用德国Qiagen公司的PowerMax土壤试剂盒提取DNA,并采用通用植物引物g-h (Taberlet et al., 2007) 对样品中叶绿体trnL (UAA) 内含子区的P6环进行PCR扩增,PCR产物随后送至瑞士Fasteris公司进行第二代高通量双端测序,测序仪器为Illumina NextSeq 550。数据质量分数Q30为81.97。
刘兴起, 贾伟瀚
1)数据内容 包括采样点的观测年份、经纬度、海拔、生态系统类型、不同土层(SOC0-100 (kg Cm-2); 0-100代表土层)、地下生物量含量。 2)数据来源 此部分数据是从文献中获取,具体文献来源参考说明文档。 3)数据质量描述 数据观测覆盖范围广,包含指标全面,展示了不同土层下的土壤有机碳含量,具有较高的完整性和精确性,能满足对青藏高原草地土壤碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原土壤的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
1)数据内容 包括采样点的观测年份、经纬度、生态系统类型、年降雨量、干旱指数、年净初级生产力、地上生物量、地下生物量等数据。 2)数据来源 一部分来源于文献(1980-1995),另一部分来源于实地采样(2005-2006)。 3)数据质量描述 数据观测年份长,时间跨度大,覆盖范围广,包含指标多,具有较高的完整性和精确性,能满足对青藏高原草地植被碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
本数据集是2019年9月川藏铁路沿线典型植被无人机高光谱观测数据,使用的是大疆M600 Resonon成像系统的机载光谱仪。包括2019年在拉萨的草原区域观测的高光谱数据,自带经纬度。高光谱调查时基本为晴天。飞行前进行了白板校准;采集数据时设有靶标(即适于草地的标准反光布),用于光谱校准;设有地面标志点(即有字母的泡沫板照片),并记录了每个标志点的经纬度坐标,用于几何精确校准。无人机高光谱相机记录的dn值,可使用Spectronon Pro软件转换为反射率。高光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
周广胜, 汲玉河, 吕晓敏, 宋兴阳
采用计算草地实际净初级生产力,CASA模型是一种光能利用率模型,生产力的估算主要由植物吸收的光合有效辐射(APAR)与光能转化率(ε)2个变量决定。植被所吸收的光合有效辐射(APAR)取决于太阳总辐射和植被对光合有效辐射的吸收比例;采用TEM(Terrestrial Ecosystem Model)模型计算草地潜在生产力,首先计算草地的总初级生产力(GPP),再计算植物自养呼吸(Ra),最后得出草地净初级生产力(NPP)。TEM模型是气候驱动的生产力模型,所需的参数有:植被类型、土壤质地、土壤水分、潜在蒸散、太阳辐射、云量、降水、温度和大气CO2浓度;利用随机森林算法(RF)计算青藏高原草地潜在地上生物量,预测变量包含气候、土壤、地形等14个变量。气候变量包含生长季(5-9月)平均日较差、生长季总降水、生长季平均温度和非生长季(前一年10 - 当年4月)平均日较差、非生长季总降水、非生长季平均温度。地形变量包括高程、坡度、坡向。土壤变量包含土壤质地(砂、粉、粘土含量)、土壤pH值和土壤有机碳。 实际净初级生产力和潜在净生产力数据年限为2000-2017;潜在草地地上生物量数据年限为(2014-2018)。
牛犇, 张宪洲
该数据集是基于MODIS 16天合成的NDVI产品(MOD13Q1 collection6)估算的三江源国家公园区域的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。共用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为2001年至2020年。空间分辨率为250m。数据中包含4个子文件夹,CJYYQ_phen是三江源国家公园长江源园区的物候结果,HHYYQ_phen是三江源国家公园黄河源园区的物候结果,LCJYYQ_phen是三江源国家公园澜沧江源园区的物候结果,SJY_phen是整个三江源区域的物候。 数据格式为geotif,建议使用arcmap或者Python+GDAL浏览和处理数据。
王旭峰
植被调查数据是研究生态系统结构与功能必不可少的数据。藏北地区蕴含广袤的草地生态系统,主要包括高寒草甸、高寒草地、以及高寒荒漠化的草地。由于独特的地理位置以及高海拔缺氧的环境条件,在藏北高原的群落调查数据较为稀少。本课题组基于前期工作的积累,在2017年生长季对整个藏北高原15个县域开展了较为全面的植被调查。本数据集包括藏北样带上从那曲到日土县23个采样点的围栏内外的生物量数据。本数据集可用于生产力的空间分析与模型的校准工作。
张宪洲, 牛犇
本数据集是2010年青藏高原地区的土地覆被数据,数据为栅格TIFF格式,空间分辨率为300米,包含耕地、林地、草地、水体、城市用地等22个大类,可用于青藏高原城镇化与生态环境交互胁迫的地理本底研究。该数据来自欧空局CCI-LC项目生产的土地覆被数据产品。该数据集采用了WGS84的地理坐标系统,有22个大类。数据的生产融合多种卫星数据资料,包括MERIS FR/RR,AVHRR,SPOT-VGT,PROBA-V等。经验证,该数据集的总体精度在70%以上,当然精度会在不同的地区和覆被类型上存在差异。
杜云艳
该数据集是中国科学院西北高原生物研究所调查的三江源国家公园植物采集布位点信息。该数据集时间范围是2008年至2017年,调查范围是三江源国家公园,调查内容包括采集日期、编号、科、属、种、调查日期、采集地点、采集人、经度、纬度、海拔、生境、鉴定人等信息。对国家公园的三个园区分别进行了调查,在长江源园区调查了24个科56个属的88个种的植被,总共116条记录;在黄河源园区调查了26个科64个属110个种的植被,总共159条记录;在澜沧江源园区调查了12个科22个属30个种的植被,总共33条记录。
高庆波
净初级生产力(NPP)数据基于CASA模型生产,数据内容为三江源地区2010-2015年250米分辨率逐月NPP数据集。净初级生产力定义:绿色植物单位面积、单位时间内所累积的有机物数量。 单位:0.01gC/m²/月。Monthly和Yearly NPP分别表示逐月和逐年NPP。 投影信息: Albers 等积圆锥投影 中央经线:105度 第一割线:25度 第一割线:47度 坐标西偏:4000000 meter
朱伟伟
基于MODIS 2000年至2018年生长季平均的NDVI(空间分辨率250m),利用Mann-Kendall趋势检测方法,计算了NDVI的变化趋势。对三江源国家公园的三个园区都进行了计算(CJYYQ:长江源园区;HHYYQ:黄河源园区;LCJYYQ:澜沧江源园区)。CJYYQ_NDVI_trend_2000_2018_ok.tif:长江源园区NDVI变化趋势。CJYYQ_NDVI_trend_2000_2018_ok_significant.tif:长江源园区NDVI变化趋势,剔除了不显著(p>0.05)的区域。CJYYQ_gs_avg_NDVI_2000.tif:长江源园区2000年生长季平均NDVI。单位为NDVI变化每年。
王旭峰
本数据集包含自1982年至2006年基于生态学模式与遥感数据计算青藏高原植被净初级生产力(Net Primary Productivity,NPP)的结果。 基于遥感Advanced Very High Resolution Radiometer(AVHRR)数据和Carnegie-Ames-Stanford Approach(CASA)模型生成的青藏高原生态系统NPP(1982-2006),基于第二次土壤普查数据生成的土壤碳含量,以及基于High Resolution Biosphere Model(HRBM)模型生成的生物量碳数据。 青藏高原森林生态系统NPP(1982-2006年): npp_forest82.e00,npp_forest83.e00,npp_forest84.e00,npp_forest85.e00,npp_forest86.e00, npp_forest87.e00,npp_forest88.e00,npp_forest89.e00,npp_forest90.e00,npp_forest91.e00, npp_forest92.e00,npp_forest93.e00,npp_forest94.e00,npp_forest95.e00,npp_forest96.e00, npp_forest97.e00,npp_forest98.e00,npp_forest99.e00,npp_forest00.e00,npp_forest01.e00, npp_forest02.e00,npp_forest03.e00,npp_forest04.e00,npp_forest05.e00,npp_forest06.e00 青藏高原草地生态系统NPP(1982-2006年): npp_grass82.e00,npp_grass83.e00,npp_grass84.e00,npp_grass85.e00,npp_grass86.e00, npp_grass87.e00,npp_grass88.e00,npp_grass89.e00,npp_grass90.e00,npp_grass91.e00, npp_grass92.e00,npp_grass93.e00,npp_grass94.e00,npp_grass95.e00,npp_grass96.e00, npp_grass97.e00,npp_grass98.e00,npp_grass99.e00,npp_grass00.e00,npp_grass01.e00, npp_grass02.e00,npp_grass03.e00,npp_grass04.e00,npp_grass05.e00,npp_grass06.e00 青藏高原生物量碳、土壤碳: Biomass.e00,Socd.e00 土壤碳含量数据(Socd)是参考全国第二次土壤普查的数据与《中国1:100万土壤图》按土壤亚类插值生成。 NPP数据来自CASA模型与AVHRR数据模拟生成: Potter CS, Randerson JT, Field CB et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7: 811–841. 生物量碳数据来自HRBM模型模拟生成: McGuire AD, Sitch S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 2001, 15 (1), 183-206. 原始资料主要是遥感数据和野外观测数据。精度较好;生产过程中与野外实测数据进行的验证和调参,是模拟结果尽量与野外实测数据保持在可接受的误差范围内;NPP数据与野外实测数据的验证结果表明,误差保持在15%的范围内。 空间分辨率0.05度×0.05度(经度×纬度)。
周才平
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件