本数据包括青藏高原中部的25个湖泊的细菌16S核糖体RNA基因序列数据,样品采集时间为2015年7月-8月,使用2.5升采样器对地表水进行了三次重复采样。样品采集后立即带回北京青藏高原研究所生态实验室,所取盐湖的盐度梯度为0.14 ~ 118.07 g/L。本数据为扩增子测序结果。将湖水在0.6 atm过滤压力下浓缩到至0.22μm膜上,然后通过FastDNA SPIN Kit 提试剂盒提取DNA,16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。使用Illumina MiSeq PE250测序仪进行对端测序,原始数据通过Mothur软件进行分析,序列与Silva128数据库进行比对并以97%的同源性将序列划分为操作分类单元(OTU)。本数据可用于分析青藏高原湖泊微生物多样性研究。
孔维栋
该数据为2020年西藏26个湖泊70个点位浮游植物数据,采样时间为8-9月,采样方式为常规浮游植物采样方式,样品采集1.5升,后经鲁哥氏液固定,静止沉淀后虹吸浓缩后,利用倒置显微镜镜检结果。数据包括硅藻、绿藻、蓝藻、甲藻、裸藻、隐藻、棕鞭藻、黄藻、褐藻和轮藻等10个门类,共计77种/属不同浮游植物的密度数据。该数据为原始数据,未经过处理,单位为个/L。该数据可以用于表征这些湖泊敞水区浮游植物的组成、丰度,也可用于计算这些湖泊中浮游植物群落的多样性。
张民
该数据集主要包括北温带湖泊在1985-2020年间4个时段的结冰观测频率值(ICO),以及湖泊所在位置、面积、高程等信息。其中,4个时间段分别为1985-1998(P1)、1999-2006(P2)、2007-2014(P3)以及2015-2020(P4),目的是提高计算时段内的“有效观测”次数,进而提高准确度。4个时段的ICO由各个时段内所有Landsat影像统计的“结冰”次数与“有效观测”次数的比值计算,其他的湖泊信息通过表格中的“Hylak_id”列与HydroLAKEs数据集相对应。此外,该数据仅保留了P1-P4均观测有效,且面积大于1平方千米的湖泊,约为3万个。该数据集可以反映近几十年来湖泊结冰情况对气候变化的响应。(详见论文)
王欣驰
数据由三个字段组成:经度、纬度和湖泊深度。利用声呐设备在湖泊上走航测量得到的水深数据,GPS同步测量得到的经度和纬度。利用湖水盐度和温度数据校正声呐测得的深度数据,并剔除数据异常点。利用水深数据可以插值形成湖泊水下地形图。利用水下地形图可以计算湖泊的储水量,评估青藏高原湖泊总水量。利用水下地形图结合遥感数据还可以研究青藏高原湖泊水量变化特征及其影响因素,是亚洲水塔水量变化研究的重要组成部分。
朱立平
本数据集包括中亚大湖区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的内陆水域数据,包括河流,运河和湖泊的分布。各个国家的线状和面状要素分别存储在不同文件中。该数据集来自世界数字地图(DCW),其主要来源是美国,澳大利亚,加拿大和英国制作的美国国防测绘局(DMA)的操作导航图(ONC)1:1,000,000比例纸质地图系列。DCW数据库最后更新至1992年,并于2006年开始免费提供。
徐晓凡, 谈明洪
该数据提供了青藏高原内陆流域582个面积大于1平方公里的湖泊从1986-2019的年湖泊面积。 首先根据JRC和SRTM DEM数据,识别研究区内582个大于1 km2的湖泊。利用Landsat5/7/8所有覆盖湖泊的遥感影像合成每年的Landsat影像,根据NDWI指数和Ostu算法动态分割每个湖泊,并据此计算每个湖泊1986-2019年湖泊面积大小。 本研究基于Landsat卫星遥感影像,利用Google Earth Engine 处理了所有Landsat影像,建立了至今为止最全的青藏高原地区大于1平方公里的年湖泊面积数据集;开发了一套湖泊面积自动提取算法,实现单个湖泊多年面积的批量计算;该数据对分析青藏高原地区湖泊面积动态、水量平衡,及研究青藏高原湖气候变化有重要意义。
朱立平, 彭萍
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
青藏高原湖泊广布,近年来呈现普遍扩张的趋势。掌握这些湖泊的水位及水量变化信息对认识区域水文-气候交互机制及其演变规律意义重大。本数据集包含青藏高原52个大、中型湖泊2000 - 2017年的水位、水量变化,面积-水位关系曲线等信息,多数湖泊的水位及水量变化时间分辨率在月尺度或旬尺度。本数据基于多源测高卫星数据和Landsat光学影像制作,将光学影像观测到的湖泊岸线变动转化为水位信息(简称光学水位),并且借助光学水位移除了多源测高水位之间系统偏差。野外实验和理论分析的结果一致表明光学水位的精度在0.1 - 0.2 m,与测高水位精度相当,测高水位的不确定性用同一周期内有效水面足迹点高程的标准差表示,已经包含在数据集中。本数据集可以应用于水资源和水安全管理,湖泊流域水文分析,水量平衡分析等,尤其在湖泊溢流洪水监测方面有较大的潜力。
李兴东, 龙笛, 黄琦, 韩鹏飞, 赵凡玉, 荣田佳秀
本研究数据主要基于Google Earth Engine大数据云处理平台,选用2017年三江源、普尔河、育空河流域Sentinel-2为基础数据,SRTM-DEM和Global Surface Water为辅助数据,选用AWEIn,AWEIs,WI2015,MNDWI,NDWI等多种水体指数阈值提取的方法,依据年水体频率获得季节水体与永久水体分类数据(空间分辨率10m)。该水体数据产品,为高时空分辨率水体变化和冻土水文分析提供了有效基础数据。
冉有华
GLObal WAter BOdies database(GLOWABO)数据集,Charles Verpoorter等人基于GeoCoverTM Water bodies Extraction Method利用2000±3年Landsat 7 ETM+影像,获得全球水体数据集。水体提取方法结合主成分分析、阈值提取、纹理特征提取等多种方法,空间分辨率15m,总体精度91%。数据还包括水体面积、周长、形状指数、高程等信息。本数据集选区其中三江源流域、普尔河流域、育空河流三个流域数据集,为北半球极地水文研究提供数据支持。
Charles Verpoorter
基于20世纪60年代的锁眼卫星数据,采用面向对象的监督分类,结合人工目视解译修正,生产出水体数据产品。总解译面积64.5万km2,占研究区96.28%,其中三江源研究区影像缺失18844 km2,阿拉斯加育空流域研究区影像缺失4220 km2,西西伯利亚普尔河流域研究区影像缺失1954 km2。解译最小线状地物图上宽度大于8米,最小面状地物图上面积大于100平方米,描迹精度2个象元,一级类解译精度达到95%以上。获取的高空间分辨率水体数据产品,为上世纪70年代水体变化研究提供有效数据,也为冻土变化研究提供可靠依据。
冉有华
该数据集包含了2018年1月1日至2018年10月12日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726'' E,北纬 36° 35' 27.337'' N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖表辐射温度(IRT_1)(单位:摄氏度)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.1.1-10.12由于由于采集器的问题,除四分量外的气象数据均无记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。
李小雁
湖泊的形成与消失、扩张与收缩对生态环境演化和社会经济发展都有重要影响。由于受气候、生态环境和人类活动等因素的综合影响,湖泊水域范围的变化速度快、幅度大,对观测的频率和分布都有很高的要求。近几十年以来,卫星遥感技术以其快速、覆盖面广、成本低廉等优点,为较大区域的湖泊动态监测提供了重要数据基础。针对大范围、高精度、长时间序列的湖泊变化分析对遥感数据时空分辨率的需求,本数据集基于 Landsat 卫星数据的自动湖泊提取方法(Feng et al., 2015),利用 2000 年以来的 Landsat 多颗卫星的观测数据,收集了2000 年以来的云量小于 80%的所有Landsat 数据,获得共 96278 景影像(约 25T 数据量),结合高性能数据存储和处理能力,提取了青藏高原和中亚地区 2000-2015 年湖泊分布记录,形成了时空一致的逐月水域范围数据集。利用分层随机采样采集样点,通过人工解译,获取能够代表不同时空分布的验证样点。评价结果表明:研究区时间序列水体数据总体精度为 99.45%(±0.59),水体用户精度(错分)为 85.37% (±3.74),制图精度(漏分)为 98.17%(±1.05)。
冯敏, 车向红
青藏高原湖泊水位观测数据集包含扎日南木错,巴木错,达瓦错,达则错和蓬错湖泊的水位日变化数据。 湖水水位通过安装在湖岸边的HOBO水位计(U20-001-01)观测,再通过安装在岸边的气压计或附近气象站气压数据进行校正,然后得到真实的水位变化。精度小于0.5cm。 数据集包含以下内容: 2010-2017年扎日南木错湖水水位日变化数据; 2013-2017年巴木错湖水水位日变化数据; 2013-2017年达瓦错湖水水位日变化数据; 2013-2017年达则错湖水水位日变化数据; 2013-2017年蓬错湖水水位日变化数据。 水位,单位:m。
类延斌
青藏高原湖泊动态数据集采用美国陆地资源卫星(Landsat)遥感数据为主,采用波段比值与阈值分割方法制作,数据覆盖时间从1984年到2016年,时间分辨率为5年一期,覆盖范围为青藏高原,空间分辨率为30m。水体面积提取方法采用波段比值(B4/B2)或者水体指数(MNDWI)为主,构建分类树,算法构建考虑水体的光谱特征在时间和空间上的变化,并且考虑水体所处的空间为主的坡度、坡向信息调整决策树的阈值。长时间序列星载卫星数据来自Landsat MSS、TM、ETM+和OLI等系列传感器。水体信息提取的最小单元为2*2个像元,小于0.36*10^-2Km²的水体全部剔除。通过高分辨率遥感数据提取的水体信息以及目视解译确定的水体检验点的验证表明青藏高原水体面积信息的总体精度优于95%。数据以shape文件保存,投影方式为Albers投影,中央经线为105 °,双标准纬线纬度为25 °和47 °。
宋开山, 杜嘉
数据集为塔里木河流域湖泊分布图,比例尺250000,投影:经纬度,数据包括空间数据和属性数据,湖泊属性字段:NAME(湖泊的名称)、CODE(湖泊编码)
国家基础地理信息中心
疏勒河流域是河西走廊三大内陆河流域之一,近年来,随着气候的明显变化和人类活动的加剧,疏勒河流域水资源短缺和生态环境问题日益突出。研究疏勒河流域在未来气候情境下径流变化,对于制定合理的水资源规划以及展开生态环境保护具有重要意义。 数据集为疏勒河流域湖泊分布图,比例尺25万,数据包括空间数据和属性数据,湖泊属性字段:NAME(湖泊的名称)、CODE(湖泊编码)。 收集整理疏勒河流域基础、气象、地形地貌,专题数据等,为疏勒河流域治理提供数据支持。
数据集为天山北麓诸河流域湖泊分布图,比例尺25万,投影:经纬度,数据包括空间数据和属性数据,湖泊属性字段:NAME(湖泊的名称)、CODE(湖泊编码)。
国家基础地理信息中心
数据集为柴达木河流域湖泊分布图,比例尺250000,投影:经纬度,数据包括空间数据和属性数据,湖泊属性字段:NAME(湖泊的名称)、CODE(湖泊编码)。
国家基础地理信息中心
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件