我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
格陵兰冰盖的物质损耗是近几十年来全球海平面上升的主要贡献者,在全球变暖的趋势下,格陵兰冰盖正在加速融化,探索其物质平衡对气候的变化响应具有重要的科学意义。作者基于MEaSUREs格陵兰触地线产品和流域边界,将触地线离散化,结合1985-2015年的MEaSUREs年度冰流速数据,和BedMachine v3冰厚度数据,矢量计算触地线各通量出口单元处冰通量;我们使用RACMO2.3p2模式的表面物质平衡数据,空间计算各流域表面物质平衡,并结合冰通量结果,得到格陵兰冰盖物质平衡数据集(1985-2015年)。该数据集包括1985年、2000年、2015年三年的格陵兰冰盖各流域物质平衡结果,含有各通量出口单元位置对应的年度冰流速、冰厚度、冰通量等信息。该数据集实现了触地线处冰通量的精细评估,可以反映近三十年格陵兰冰盖各流域物质平衡的变化情况和空间分布特征,为后续格陵兰冰盖物质平衡的精细变化评估及预测,和冰盖损耗机理探究提供基础性数据。
林依静, 刘岩, 程晓
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件