南极McMurdo Dry Valleys 冰川表面流速遥感后处理产品,基于Antarctic Ice Sheet Velocity and Mapping Project(AIV)数据,通过先进的算法和数值工具后处理得到。该产品利用Sentinel-1/2/Landsat数据绘制,提供了McMurdo Dry Valleys 均匀、高分辨率(60m)的冰流速结果,时间覆盖范围从2015到2020。
江利明
该数据为第六次国际耦合模式比较计划 (CMIP6)在中等排放场景(ssp245)下对2020年-2100年南极海冰密集度数据的模拟。对CMIP6的25个模式数据统一插值后进行集合平均。海冰密集度数据大小在0-1之间,数据时间范围从2020年1月至2100年12月,时间分辨率为月,空间范围为南纬45°以南,空间分辨率为1°×1°。该数据提供了中等排放情景下,南极海冰的的状态和演变,可为南极未来变化等研究提供参考。
李双林, 王惠
基于中国第33次南极科学考察,在东南极中山站至Dome A断面上获取的雪冰金属元素浓度时空分布数据集,主要包括:1、距离中山站202公里处获取的一支浅冰芯,冰芯涵盖时间长度为1990年至2017年,分辨率为年,包括金属元素铁以及氢氧同位素等数据。2、沿着东南极中山站-Dome A断面,每个10公里采集一个样品,金属元素包括稀土元素和钡等元素。数据可用于研究自然源和人类活动对南极雪冰的污染和贡献等。
杜志恒
三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
南极冰盖21、22流域分布有松岛冰川、斯维特冰川等,是西南极融化最为剧烈的地区之一。本数据集首先利用Cryosat-2数据(2010年8月至2018年10月),在每个规则格网内,考虑地形项、季节波动、后向散射系数、波形前缘宽度及升降轨等因素建立平面方程,通过最小二乘回归计算格网内冰盖表面高程变化。另外,我们使用了ICESat-2数据(2018年10月至2020年12月),通过在每个规则格网内获取两个时期的卫星升降轨道交叉点处的高程差值,进而计算该时期内冰盖的表面高程变化。两个时期的面高程变化数据空间分辨率为5km×5km,文件格式为GeoTIFF,投影坐标为极地立体投影(EPSG 3031),并由所使用的卫星测高数据名称命名(即CryoSat-2、ICESat-2)。该数据可使用ArcMap、QGIS等软件打开。结果表明,该区域2010-2018年平均高程变化率为-0.34±0.08m/yr,属于融化剧烈地区。2018年10月-2020年11月年平均高程变化率为-0.38±0.06m/yr,相比于CryoSat-2计算结果该区域融化处于加剧状态。
杨博锦, 黄华兵, 梁爽, 李新武
2000-2020年三极地区0.1º气溶胶光学厚度数据集(也称为“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集),结合Merra-2模式数据与MODIS卫星传感器AOD制作,数据覆盖时间从2000年到2020年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁
(1)数据内容:过去200年南极区域海冰范围(最北边界)数据集;(2)数据来源及加工方法:该数据利用6条年分辨率的代用指标(冰芯MSA、积累率等),基于统计模型产生;(3)数据质量描述:年分辨率;包含区域:印度洋-西太平洋(50°–150°E, IndWPac),罗斯海 (160°E–140°W, RS),阿蒙森海(90°–140°W, AS),别林斯高晋海 (50°–90°W, BS),威德尔海 (50°W–20°E, WS);(4)可用于研究南极海冰的年代际演变特征。
杨佼
近年来,随着南极冰盖消融的加速,冰盖2000-2019表面形成大量冰面融水。深入理解南极冰盖冰面融水的时空间分布与动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集基于2000-2019年30m空间分辨率Landsat7和Landsat8影像,利用归一化水体指数、Gabor滤波和形态学路径开操作,生成冰面融水栅格数据集,在ARCGIS中将栅格水体掩膜转换为矢量数据。本数据集是基于Landsat影像提取的2000-2019年南极冰盖消融区(南极半岛亚历山大岛)250m冰面融水数据集。时间集中在每年12月至次年2月(南半球夏季)
杨康
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
为了更好地了解全球气候与 Fimbu与Jelbart 冰架相互作用的机理,获取该区域长时间的冰流速变化至关重要。1960s-1980s东南极Fimbul-Jelbart冰架冰流速度场数据产品集:使用早期的Argon、 Landsat MSS和TM卫星影像,基于对早期遥感影像进行预处理获得精密几何地位的正射影像,提出了人工点-特征点-格网点的三角网约束策略下的分层匹配方法,提取了东南极Fimbul-Jelbart冰架区域的历史冰流速度场数据产品。本研究对于研究东南极Fimbul-Jelbart冰架1963-1987年间历史冰流速具有重要意义,可为研究冰盖对全球气候变化的响应提供基础数据。
李荣兴, 冯甜甜, 李雁君, 程远, 乔刚
太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。
白建辉
1963年东南极Rayner冰川基于ARGON历史遥感影像的冰流速度场数据产品。利用间隔两个月的两张1963年拍摄的解密卫星影像,基于视差分解进行分层匹配,估算了南极洲东部雷纳冰川的早期冰流速度场。估算得到速度图的精度可达到70米/年。基于光学立体像对视差分解的协同冰川表面流速估算方法。首先对待匹配影像生成核心影像,并生成核心影像的金字塔;接下来使用冰流区域掩膜,将影像分为冰流区与非冰流区分别进行匹配,其中冰流区除正常匹配步骤外,还需要进行视差分界,从而区分冰流运动对于地形视差的影响。最终通过逐层匹配的方法,我们可以在底层得到物方的DTM及冰流图。本数据对于重建东南极Rayner冰川早期表面形态及其冰流速度具有重要意义。
李荣兴, 乔刚, 叶文凯
典型年三极冰雪微生物后处理产品收集了2010-2018年期间南北极以及青藏高原地区冰川、冰川雪和冰里采样细菌分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极和青藏高原地区冰川雪和冰里原核为刘勇勤老师实验组在2010-2018年间从NCBI数据库收集的细菌16S核糖体RNA基因序列。收集的序列通过使用DOTOUR软件计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于80%的情况下鉴定到属一级水平;青藏高原冰川采集时间为2010-2018年间,包含刘勇勤老师实验组分离的青藏高原7条冰川(珠峰东绒布冰川,天山一号冰川,古里雅冰川,老虎沟冰川,木孜塔格冰川,七一冰川和玉珠峰冰川),向述荣老师分离的马兰冰川和张新芳老师分离的若岗日冰川的细菌16S核糖体RNA基因序列。冰川样品采集后带回北京青藏高原院研究所生态实验室和兰州冰冻圈国家实验室,涂布平板后于不同温度下(4-25摄氏度)培养20天-90天并挑取单菌落纯化。分离的细菌提取DNA后以27F/1492R引物扩增16S核糖体RNA基因片段,并使用Sanger法测序。16S核糖体RNA基因序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于80%的情况下鉴定到属一级水平。
叶爱中
典型年三极土壤微生物后处理产品收集了2005-2006年期间南北极地区土壤采样细菌分布分析结果和2015年期间青藏高原地区土壤采样细菌分布分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极地区样品采集时间为2005年12月13日至2006年12月8日,包含北极3个地区52个样品(Spitsbergen Slijeringa,Spitsbergen Vestpynten,及Alexandra Fjord Highlands),南极5个地区171个样品(Mitchell Peninsula,Casey station main power house, Robinsons Ridge,Herring Island,Browning Peninsula);青藏高原采集时间为2015年7月1日至7月15日,包含草甸,草原,荒漠3种生态系统,共计18个采样点位,每个采样点位样品个数为3-5个。采样点降水、气温和干旱度由气象信息估算得到,供读者参考。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用27F(5'-GAGTTTGATCNTGGCTCA-3')和 519R (5'-GTNTTACNGCGGCKGCTG-3')扩增16S rRNA基因片段。扩增后的片段通过454方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。
叶爱中
冰雪具有高反射率,冰盖表面融化会降低地表反照率进而影响区域能量平衡,表面融化形成的水文系统会影响冰盖稳定性进而影响冰盖物质平衡。本数据集基于微波辐射计与光学反照率产品,对微波辐射计当日、冬季(6-8月)平均和7月平均进行波段合成,利用Gram-Schmidt方法将微波辐射计波段合成数据与MODIS GLASS反照率产品融合,使其空间分辨率从25 km提高至0.05˚。然后基于微波辐射计当日与冬季亮温差值的阈值法对降尺度结果提取南极冰盖表面融化,得到1985-1986年、2000-2001年、2015-2016年南极冰盖表面0.05˚ 每日融化产品。该数据集0.05˚ 的空间分辨率高于目前国内外已发布数据集,凸显了辐射计和反照率数据对表面融化的响应,空间细节特征更加清晰,保持了原辐射计产品的动态范围,有效地抑制了辐射计噪声,更好的反映了山区、触地线区域和冰架的融化范围随时间的梯度演变特征,产品精度更高。该数据集的数据类型为整型,其中1代表融化,0代表未融化,255代表冰盖以外掩膜区域,数据集以“*.nc”格式存储。
魏思怡, 刘岩
海冰表面的积雪控制着能量收支,影响海冰的生长和消融,具有重要的气候作用。积雪厚度作为积雪的重要属性之一,对于理解气候变化、估算海冰参量等具有重要意义。被动微波数据可以获取逐日半球尺度的积雪厚度观测数据,但是原先提出的估算方法会产生明显的低估,限制了该方法的进一步应用。我们构建了一个新的且鲁棒的线性回归公式,通过引入低频信号明显改进了被动微波反演积雪厚度的效果,并且基于AMSR-E,AMSR-2和SSMIS被动微波辐射计亮温数据,应用该方法生成了2002—2020年逐日南极海冰表面积雪厚度数据集。采用7年的机载Operation IceBridge (OIB) 飞行计划获取的积雪厚度测量数据进行回归分析,发现采用垂直极化下37和19 GHz的亮温计算得到的极化梯度率(gradient ratio, GR),即GR(37/7),是用于南极海冰表面积雪厚度估算的最优极化梯度率,均方根偏差约为8.92厘米,相关系数为-0.64,并获取了相应的线性回归公式系数。GR(37/19)用于基于SSMIS的积雪厚度估算,用来填补AMSR-E和AMSR-2之间的观测空白。不同辐射计估算的积雪厚度进行了一致性校正。基于高斯误差传递法估算的积雪厚平均不确定度约为3.81厘米,占积雪厚度的12%左右。与Australian Aantarctic Data Centre发布的实测数据对比发现提出的方法明显优于原有的方法,平均差异和均方根偏差约为5.64厘米和13.79厘米,而原有方法的平均差异和均方根偏差约为-14.47厘米和19.49厘米。与Antarctic Sea Ice Processes and Climate 计划发布的船载观测数据对比发现提出的方法略优于原有方法(均方根偏差分别为16.85厘米和17.61厘米),并且该方法在海冰生长期和融化期有着相似的精度,表明该方法也可以应用于消融季。基于该套数据,我们发现2002—2020年在南极所有海域和季节内海冰表面积雪厚度均呈现降低趋势。该数据可以进一步用于再分析数据的评估,海冰厚度估算和气候模式等方面。
沈校熠, 柯长青
本数据集包括南极冰盖花杆、冰(雪)芯/雪坑、自动气象站高度仪和探地雷达观测的日平均、年平均和多年平均表面物质平衡数据。数据来自已发表的文献,数据报告及国际数据共享平台,经质量控制后,形成了到目前为止最为完善的南极冰盖表面物质平衡日、年和多年分辨率的数据集,其中年分辨率表面物质平衡数据跨度过去1000年。该数据集主要用于冰川学、气候学及水文学等学科领域,特别地可用于南极表面物质平衡时空变化定量分析,气候模式验证,驱动冰盖模式和粒雪化模型等等。
王叶堂
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月南极冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE-FO (2018年六月至今)。由于GRACE和GRACE-FO之间有一年左右数据间断,我们额外采用了由欧洲空间局ESA的Swarm星座GPS数据反演得到的重力场数据(2013年12月至2019年12月)。所采用GRACE重力场数据为德州大学奥斯丁空间研究中心(CSR)、德国地学研究中心(GFZ)、美国宇航局喷气推进实验室(JPL)以及俄亥俄州立大学(OSU)四家机构发布产品的加权平均模型。GRACE数据后处理包括:用SLR数据解算结果替换GRACE低阶重力场参数(degree-1, C20和C30),去条带滤波,300公里高斯平滑,ICE6-G_D(VM5a)GIA模型,信号泄露误差改正,椭球误差改正等。
张宇, 沈嗣钧
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件