冰川表面运动提取在冰川动力学与物质平衡变化研究中具有重要意义,针对当前我国自主遥感卫星数据在冰川运动监测应用中存在的不足,选用GF-3卫星FSI模式下获取的2019—2020年间覆盖青藏高原高山区典型冰川的SAR数据,借助并行化偏移量跟踪算法获取了研究区冰川表面流速分布。GF-3影像凭借其良好的空间分辨率,在规模较小、运动缓慢的冰川运动提取方面具有显著的优势,能够更好地体现冰川运动细节信息及其差异性。该研究有助于分析气候变化背景下青藏高原地区冰川的运动规律及其时空演变特征。
闫世勇
南极McMurdo Dry Valleys 冰川表面流速遥感后处理产品,基于Antarctic Ice Sheet Velocity and Mapping Project(AIV)数据,通过先进的算法和数值工具后处理得到。该产品利用Sentinel-1/2/Landsat数据绘制,提供了McMurdo Dry Valleys 均匀、高分辨率(60m)的冰流速结果,时间覆盖范围从2015到2020。
江利明
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 柴晨好
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 刘虎
海冰的减少和表面融水的增加,可能诱发冰流加速和锋面塌陷,对格陵兰冰架的稳定性有重大影响。然而,由于稀少的遥感观测,快速崩解之前的详细冰动态前兆和驱动因素仍然不清楚。我们通过联合使用高时空分辨率的遥感观测和冰流模型,对格陵兰岛北部Petermann冰川2017年7月26日崩解事件前的水文和运动学前兆进行了全面调查。2017年7月期间的冰流速度场的时间序列是通过Sentinel-2的观测来检索的,采样间隔为次周。冰流速度在7月26日(崩解前一天)迅速达到30米/天,这大约是平均冰川速度的10倍。
江利明
冰川是全球气候变化的放大器和指示器,目前在全球气温升高的背景下,全球范围内冰川融化持续加快。跃动冰川是一种有着间歇性和周期性加速运动的冰川,其对气候变化非常敏感。本数据集基于Landsat和Sentinel系列多源光学卫星遥感影像数据,通过对影像进行筛选、拼接、裁剪获得研究区域影像。其中,对Landsat TM 影像中L1GS 级别影像采用二阶多项式进行配准校正,影像配准后误差小于一个像素。之后利用方向相关算法进行影像匹配,生成了格陵兰冰盖典型的跃动冰川——Sortebræ 冰川在1980s至2020 年期间不同阶段的表面运动速度。本数据集期望有助于对Sortebræ 冰川跃动过程的研究,以及对全球变暖背景下冰川跃动机理的探讨。
乔刚, 孙子翔, 袁小涵
南极冰盖21、22流域分布有松岛冰川、斯维特冰川等,是西南极融化最为剧烈的地区之一。本数据集首先利用Cryosat-2数据(2010年8月至2018年10月),在每个规则格网内,考虑地形项、季节波动、后向散射系数、波形前缘宽度及升降轨等因素建立平面方程,通过最小二乘回归计算格网内冰盖表面高程变化。另外,我们使用了ICESat-2数据(2018年10月至2020年12月),通过在每个规则格网内获取两个时期的卫星升降轨道交叉点处的高程差值,进而计算该时期内冰盖的表面高程变化。两个时期的面高程变化数据空间分辨率为5km×5km,文件格式为GeoTIFF,投影坐标为极地立体投影(EPSG 3031),并由所使用的卫星测高数据名称命名(即CryoSat-2、ICESat-2)。该数据可使用ArcMap、QGIS等软件打开。结果表明,该区域2010-2018年平均高程变化率为-0.34±0.08m/yr,属于融化剧烈地区。2018年10月-2020年11月年平均高程变化率为-0.38±0.06m/yr,相比于CryoSat-2计算结果该区域融化处于加剧状态。
杨博锦, 黄华兵, 梁爽, 李新武
数据为excel文件,文件包括4个表格,表格名称分别为:阿勒泰积雪DOC时间系列、阿勒泰积雪雪坑数据、阿勒泰积雪MAC(吸收截面)和中亚木斯岛冰川BC、OC、DUST数据四个表格。 阿勒泰积雪DOC表格含:样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共七列,47个样品数据。 阿勒泰积雪雪坑表格含:雪坑号、样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共8列,238个样品数据。 阿勒泰积雪MAC表格含:采样时间、MAC和AAE共3列,46个样品数据。 中亚木斯岛冰川BC、OC、DUST数据表格含:code no(样品号)、Latitute(纬度)、Longitude(经度)、/m a.s.l(海拔高度)、snow type(积雪类型)、BC、OC和DUST共8列,按采样时间分析。共105行数据。 缩写解释: DOC:Dissolved Organic Carbon 溶解性有机碳 MAC:mass absorption cross section吸收截面 BC:black Carbon黑碳 DUST:粉尘 OC:有机碳 TN:Total Nitrate (总氮) PPM:ug g-1 (微克每克 ) PPb:ng g-1( 纳克每克)
张玉兰
亚洲高山区是世界第三极,称之为“亚洲水塔”,受气候变暖的影响,冰川持续亏损,深刻改变了冰川水资源的供需关系。为了系统认识冰川对气候变化的响应程度,项目通过冰川物质平衡的敏感性,揭示冰川物质平衡变化与气候因子之间的关系。数据包括两张图:物质平衡对气温的敏感性和物质平衡对降水的敏感性图,冰川气候敏感性分区图。 在过去70年亚洲高山区各山系的冰川物质平衡演化序列差异显著,喀喇昆仑和西昆仑地区的冰川呈现出稳定态,物质平衡为微弱的正平衡,而喜马拉雅山、天山和祁连山在1990年之后出现加速退缩的趋势。这主要归因于物质平衡对气温、降水等敏感性。利用0.5°分辨率的ERA5 气温和降水数据驱动月尺度的物质平衡模型,通过43条监测冰川的物质平衡率定参数,2000-2016年的1°×1°ASTER物质平衡数据对参数进行空间约束,利用空间参数外推的方法重建了1951-2020年亚洲高山区95085条冰川的物质平衡序列,分析了冰川物质平衡对气温(±0.5k、±1k、±1.5k)和降水(±10%、±20%、±30%)的敏感性,根据物质平衡的空间敏感性差异,结合冰川物质平衡的影响要素(夏季气温的分布、夏季降水的比率、冰川类型的分布、夏季晴空太阳辐射分布等),对亚洲高山区的冰川气候敏感性进行归类划分,主要分为为4类: 气温主控区:指气温是冰川物质平衡变化的主要控制因素,降水占据次要位置; 降水控制区:指冰川主要受降水控制,全年的冰川区气温低于0℃; 冬季累积型冰川气温、降水控制区:指冰川主要受冬季的降水补给,冰川的物质平衡变化是气温和降水共同作用的结果; 夏季累积型冰川气温、降水控制区:指冰川的补给方式是夏季降水,冰川的物质平衡是气温和降水共同作用的结果。
上官冬辉
近年来,随着南极冰盖消融的加速,冰盖2000-2019表面形成大量冰面融水。深入理解南极冰盖冰面融水的时空间分布与动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集基于2000-2019年30m空间分辨率Landsat7和Landsat8影像,利用归一化水体指数、Gabor滤波和形态学路径开操作,生成冰面融水栅格数据集,在ARCGIS中将栅格水体掩膜转换为矢量数据。本数据集是基于Landsat影像提取的2000-2019年南极冰盖消融区(南极半岛亚历山大岛)250m冰面融水数据集。时间集中在每年12月至次年2月(南半球夏季)
杨康
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。
白建辉
1963年东南极Rayner冰川基于ARGON历史遥感影像的冰流速度场数据产品。利用间隔两个月的两张1963年拍摄的解密卫星影像,基于视差分解进行分层匹配,估算了南极洲东部雷纳冰川的早期冰流速度场。估算得到速度图的精度可达到70米/年。基于光学立体像对视差分解的协同冰川表面流速估算方法。首先对待匹配影像生成核心影像,并生成核心影像的金字塔;接下来使用冰流区域掩膜,将影像分为冰流区与非冰流区分别进行匹配,其中冰流区除正常匹配步骤外,还需要进行视差分界,从而区分冰流运动对于地形视差的影响。最终通过逐层匹配的方法,我们可以在底层得到物方的DTM及冰流图。本数据对于重建东南极Rayner冰川早期表面形态及其冰流速度具有重要意义。
李荣兴, 乔刚, 叶文凯
该数据集包含北极两条大河 (北美:Mackenzie,欧亚:Lena)的观测及模拟的入海径流量及各径流成分(总径流、冰川径流、融雪径流、降雨径流)的组成,时间分辨率为月。该数据是利用项目组制作的气象驱动场数据驱动发展的VIC-CAS模型,利用观测的径流及遥感积雪数据进行校正,径流的模拟的Nash效率系数达到0.85以上,模型也能较好地模拟积雪的空间分布和年内、年际变化。 该数据可用于分析长期的流域径流的组成及变化原因,加深对北极大河径流变化的理解。
赵求东, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1971-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为0.1degree,时间分辨率为月。该数据集可用于长期气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1998-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为50km,时间分辨率为月。该数据集可用于气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
山地冰川是中国西部及其周边地区重要的淡水资源。由于冰川融水在流域尺度为生态和社会经济用水提供补给,因此,确定冰川作用(补给)流域是开展冰川水资源供给功能和服务研究的基础。基于Randolph Glacier Inventory 6.0、中国历次冰川编目、中国三级流域边界数据(中国科学院资源与环境科学数据中心提供)和全球流域边界数据HydroBASINS(www.hydrosheds.org),通过将冰川分布数据与流域边界数据进行相交分析,生成了20世纪50年代至21世纪20年代(至今)(1)中国两级冰川作用流域边界、(2)中国冰川作用的国际河流流域边界以及(3)亚洲高山区冰川作用流域边界数据。该数据兼顾了中国和全球常用流域边界,并将二者很好匹配,以期为中国及其周边地区冰川水资源研究提供基础数据。
苏勃
冰川物质平衡是表征冰川积累和消融量值的重要冰川学参数之一。冰川物质平衡是联系气候和冰川变化的纽带,是冰川对所在地区气候状况的直接反映。气候变化导致冰川的物质收支状况发生相应的变化,而这种物质上的收支变化又可以引起冰川运动特征及冰川热状况的改变,进而导致冰川末端位置、面积和冰储量的变化。监测方法即在冰川表面设置固定标志花杆,定期监测冰川表面相对于花杆顶点的距离,以计算冰雪消融量;在积累区定时定点开挖雪坑或钻孔取样,测量雪层密度,分析雪-粒雪-附加冰层位特征,计算雪层积累量;再将单点监测结果绘到大比例尺冰川地形图上,按净平衡等值线法或等高线分区法计算整条冰川的瞬时、季节(如冬季和夏季)及年度的物质平衡分量。该数据集为青藏高原及天山地区不同代表性冰川年物质平衡数据,单位为毫米水当量。
邬光剑
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
杨威
本数据为末次冰盛期以来亚洲高山区冰川分布的模拟数据,其中包括典型区域(亚洲高山区、天山、喜马拉雅山、帕米尔高原)年分辨率的冰川面积变化序列以及典型时期(LGM(20000~19000ka),HS1(17000~16000ka),BA(~14900~14350ka),YD(12900~12000ka),EH(9500~8500ka),MH(6500~5500ka),LH(3500~2500ka)和Modern(1951~1990))1km分辨率的亚洲高山区冰川分布。该数据以基于CCSM3气候模式的TRACE全强迫模拟试验数据为外强迫场,驱动1km分辨率的PISM冰盖模式,从而获取末次盛冰期以来亚洲高山区冰川的可能分布。该数据可以用于研究末次冰盛期以来亚洲高山区冰川分布的变化及其对湖泊水位、径流、地貌等环境和气候要素的影响。
燕青
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)水下20cm左右,绝对压力和水体温度。该自动水位计的数据采用USB离线获取的方式收集,初始记录时间为2021年6月19日20时00分,记录间隔为10分钟,2021年9月18日11:00现场下载数据。数据完整。
张东启
该数据集是刘勇勤课题组从2010年以来多次野外采样积累的数据汇总而成,包括青藏高原12个冰川的冰芯和雪坑微生物丰度数据(5409条记录)和38个冰川的溶解性有机碳和总氮数据(2532条记录,包括冰芯、雪坑、表面冰、表面雪和冰前径流等生境)。所采样的冰川覆盖范围广,气候条件多样,多年平均气温从-13.4℃(古里亚冰川)到2.9℃(朱溪沟冰川),多年平均降水量从76.9毫米(15号冰川)到927.8毫米(24K冰川)。这些数据可为研究冰川碳氮循环和全球变暖背景下冰川退缩对下游生态系统的影响提供基础数据。
刘勇勤
格陵兰冰盖的物质损耗是近几十年来全球海平面上升的主要贡献者,在全球变暖的趋势下,格陵兰冰盖正在加速融化,探索其物质平衡对气候的变化响应具有重要的科学意义。作者基于MEaSUREs格陵兰触地线产品和流域边界,将触地线离散化,结合1985-2015年的MEaSUREs年度冰流速数据,和BedMachine v3冰厚度数据,矢量计算触地线各通量出口单元处冰通量;我们使用RACMO2.3p2模式的表面物质平衡数据,空间计算各流域表面物质平衡,并结合冰通量结果,得到格陵兰冰盖物质平衡数据集(1985-2015年)。该数据集包括1985年、2000年、2015年三年的格陵兰冰盖各流域物质平衡结果,含有各通量出口单元位置对应的年度冰流速、冰厚度、冰通量等信息。该数据集实现了触地线处冰通量的精细评估,可以反映近三十年格陵兰冰盖各流域物质平衡的变化情况和空间分布特征,为后续格陵兰冰盖物质平衡的精细变化评估及预测,和冰盖损耗机理探究提供基础性数据。
林依静, 刘岩, 程晓
南极冰盖是全球海平面上升的最大潜在来源之一,准确确定冰盖物质收支情况是理解南极冰盖动态变化的关键,对理解冰盖演变历程、准确预测未来全球海平面上升都是至关重要的。作者基于MEaSUREs触地线产品和MEaSUREs南极流域边界,将触地线离散化,结合1985-2015年的MEaSUREs和RAMP年度冰流速数据,和BedMachine冰厚度数据,矢量计算触地线各通量出口单元处冰通量;使用RACMO2.3p2模式的表面物质平衡数据,空间计算各流域表面物质平衡,并结合冰通量结果,得到南极冰盖物质平衡数据集(1985-2015年)。该数据集包括1985年、2000年、2015年三年的南极冰盖各流域物质平衡结果,含有各通量出口单元位置对应的年度冰流速、冰厚度、冰通量等信息。该数据集实现了触地线处冰通量的精细评估,可以反映近三十年南极冰盖各流域物质平衡的变化情况和空间分布特征,为后续南极冰盖物质平衡的精细变化评估及预测,和冰盖损耗机理探究提供基础性数据。
林依静, 刘岩, 程晓
格拉丹东地区是青藏高原重要的、典型的大江大湖源区。本数据集提供了不同时间尺度,不同分辨率的,覆盖长江和色林错源区冰川的DEM,用以计算源区冰川表面高程的季节变化和年代际变化。数据集包括了2016-2017年7景不同月份5米分辨率的TanDEM-X数据,可用以冰川表面高程的季节性变化计算;包括了1景1976年30米分辨率的KH-9 DEM,5景2011年30米分辨率的TanDEM-X,1景2014年和3景2017年30米分辨率的TanDEM-X,可用以计算1976-2000,2000-2011,2011-2017年期间冰川表面高程变化。同时采用Landsat ETM数据勾画,并按照RGI6.0分割了1976年的冰川轮廓数据;右图显示了该数据集的空间和时间覆盖信息,底图为正射校正后KH-9影像。
陈文锋
冰盖的表面高程对气候变化非常敏感,因此冰盖的高程变化被认为是评估气候变化的一个重要变量。长期的冰盖表面高程变化的时间序列是对理解气候变化有着重要作用的基础数据。将微波雷达卫星测高的观测数据连接起来可以建立目前最长的冰盖表面高程时间序列。但是,已有的任务间偏差改正方法在交叉标定不同的观测任务时仍然有误差残留。我们通过对常用的平面拟合模型进行修改,通过任务间偏差和升降轨道偏差的同时约束改正来确保不同任务间表面高程时间序列的自洽和连贯。基于这种方法,我们使用Envisat和CryoSat-2数据构建了2002-2019年间的南极冰盖高程变化时间序列。该时间序列是月均的格网数据,格网的空间分辨率为5-km。使用机载和星载激光测高数据对结果评估发现,与传统的方法相比,该方法可以将任务间偏差改正的精度提高40%。使用解算得到的高程时间序列,结合由密实化模型得到的表面过程造成的冰盖体积变化,我们发现冰动力过程使得阿蒙森海沿岸区域的冰盖成为南极冰盖体积损失最大的区域,而表面过程则主导了托腾冰川、毛德皇后地、伊丽莎白公主地和别林斯高晋海沿岸等冰盖的体积变化过程。西南极的冰体积损失超过了东南的体积积累。在2002–2019期间,南极冰盖的体积以初始速率−68.7 ± 8.1 km3/yr,加速度−5.5 ± 0.9 km3/yr2加速损失。
张保军, 王泽民, 杨全明, 柳景斌, 安家春, 李斐, 耿红
本数据集包含了全球77个冰川水化学要素(Na+、K+、Mg2+、Ca2+、TDS)的平均浓度、高亚洲典型冰川沉积物的矿物组成、以及高亚洲八个山系的冰川年径流量。本数据集来自数据集提供者对高亚洲19条冰川的实地监测,国内外已公开发表的数据资料、以及文献作者向数据集提供者私下共享的数据资料。本数据集可用于评估气候变暖对冰川侵蚀和化学风化作用的影响、可用于评估气候变暖驱动的冰川消融对下游生态系统和元素循环的潜在影响。
李向应
近年来,南极冰盖消融逐渐加速,南极冰盖表面发育了大量冰面融水,深入理解南极冰盖冰面融水的空间分布和动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集是基于Landsat-7、8和Sentinel-2影像提取的2000-2020年南极冰盖典型消融区(普利兹湾)10-30m冰面融水数据集。数据集投影为极地方位投影,格式为矢量(ESRI Shapefile)和栅格(GeoTIFF),时间为南半球夏季(12月-次年2月)。
杨康
本数据为祁连山地区2020年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2020年祁连山全境的高分系列影像。参考数据为谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2020年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
数据包含珠西沟冰川径流的钾、钠、钙、镁、氟离子、氯离子、硫酸根和硝酸根等指标,涵盖了大部分无机溶解组分。上述阴阳离子分别采用离子色谱和电感耦合等离子光谱仪等仪器测得,检测限低于0.01mg/L,误差低于10%;本数据可以用于反映珠西沟流域硫化物氧化、碳酸盐岩溶解和硅酸盐岩风化等化学风化过程对河水溶质的贡献,进而精准计算碳酸盐岩风化速率和硅酸盐岩风化速率,最终为评估冰川作用对岩石化学风化及其碳汇效应的影响提供科学依据。
邬光剑
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
冰川表面微气象是观测冰川表面一定高度处风向风速、气温、湿度、气压、四分量辐射、冰温及降水等气象要素。冰川表面微气象监测是进行冰川监测的重要内容之一,是开展冰川表面能量-物质平衡、冰川运动、冰川融水径流、冰芯等研究及相关模型模拟研究的重要基础数据,为探究气候变化与冰川变化之间的相互关系奠定基础。主要通过在冰川表面架设高山气象站进行自动监测,也可使用便携式气象站进行短期的流动监测。近年来,在天山、西昆仑、祁连山、羌塘内陆、唐古拉山、念青唐古拉、藏东南、横断山和喜马拉雅山地区20多条冰川表面开展了相关的气象监测研究。该数据集为冰川区及冰川末端月值气象数据。
杨威
高分辨率冰芯孢粉记录能够指示季节性植被变化与气候指标的关系。本数据集对青藏高原作求普冰芯长32m的冰芯沉积物开展了高分辨率孢粉分析,获得了117个冰芯孢粉组合数据,所有数据为孢粉百分比数据,按照深度顺序排列。
吕厚远
1. 数据内容(包括的要素及意义) 冰川厚度即冰川表面与冰川底部间的垂直距离。冰川厚度的分布不仅受冰川规模与冰下地形控制,同时也随着冰川对气候响应阶段不同而变化。数据包含冰川测线经纬度、高程、单点厚度、测量冰川冰体总储量、测量仪器型号等信息。 2. 数据来源与加工方法 冰川厚度主要来源于钻孔和探地雷达测厚(Ground-Penetrating Radar, GPR)。钻孔法即在冰面进行钻孔至冰下基岩,从而获得单点的冰川厚度;冰川雷达测厚技术则能精确地测量出测线上冰川厚度的连续分布,同时获取冰下基岩的地形特征,从而为冰川储量估算和冰川动力学研究提供必要的参数 3. 数据质量描述 冰川钻孔数据精度达到分米级。GPR雷达测厚由于冰川性质及底界面雷达信号强度差异,测厚精度理论上在5%-15%之间,。 4. 数据应用成果与前景 冰川厚度是获取冰下地形和冰川储量信息的先决条件。在冰川动力学数值模拟与模型研究中,冰川厚度是一个重要的基本输入参数。同时,冰川储量是表征冰川规模和冰川水资源状况的最直接参数,不仅对冰川水资源的准确评估和合理规划及有效利用十分重要,更对于区域社会经济发展和生态安全具有重要和深远
邬光剑
青藏高原及其周边地区潜在冰湖分布数据为矢量数据(.shp),数据集中包含每个潜在冰湖的ID、面积、周长、体积和高程。数据按照流域被分为17个区域,分别是黄河,长江,湄公河,萨尔温江,雅鲁藏布江,恒河,印度河,以及鄂毕河流域,共8个外流流域;以及河西,塔里木,柴达木,准噶尔,伊犁,锡尔河,阿姆河,和蒙古高原流域,共9个内流流域。本数据从冰川厚度数据加工而来(由Farinotti et al. (2019)提供),使用ArcGIS软件,将地区原始DEM和冰厚度数据相减,得到无冰川分布的DEM,再利用填挖工具将位于冰川床下的洼地,即潜在冰湖,挖掘出来。本数据集的质量依赖原始的冰川厚度数据的质量,而冰厚度数据集的质量是目前所有类似数据中质量最好的。青藏高原及其周边地区潜在冰湖分布数据揭示了地区未来可能会形成的冰湖,对于未来地区冰湖的形成及其分布模式的理解至关重要,目前的结果表明,青藏高原及其周边地区存在着超过 16,000 个潜在冰湖,面积为2253.95 ± 1291.29 km2,体积为60.49 ± 28.94 km3, 这相当于海平面上升0.16±0.08 mm的水当量。
张太刚, 王伟财, 姚檀栋, 高坛光, 安宝晟
雷达穿透深度改正对于采用基于雷达DEM的大地测量方法进行准确估算冰川物质平衡至关重要。由于雪的分布不均和积雪性质不同,雷达的穿透深度会因地区而异,并且依赖于海拔高度,所以本数据集给出了高亚洲1°×1°网格的SRTM C/X波段雷达穿透深度差异。该数据集包含214个高亚洲1°×1°网格的SRTM X波段和C波段的穿透深度差异结果,以及每个网格的线性拟合表达式。基于大地测量方法,采用30 m分辨率的SRTM X波段和C波段 DEM,获得了高亚洲 X波段和C波段的冰雪穿透深度差异结果,采用50 m高程分段法和线性回归分析法得到了穿透深度差与海拔高程的关系(具体方法见参考文献)。数据以excel文件存储。该数据集可以为基于SRTM DEM的高亚洲物质平衡研究提供重要的基础数据,可供研究冰川、气候、水文等的科研工作者使用。
江利明
汞是一种全球性污染物。青藏高原毗邻当前大气汞排放最严重的地区南亚,可能受到长距离传输的影响。利用冰芯和湖芯可以很好地重建大气汞传输和沉降历史。基于青藏高原和喜马拉雅山南坡8支湖芯和1支冰芯重建了工业革命以来的大气汞沉降历史。本数据集包含青藏高原纳木错、班公错、令戈错、枪勇湖、唐古拉湖和喜马拉雅山南坡Gosainkunda湖、Gokyo湖和Phewa湖的8支湖芯数据,各拉丹冬1支冰芯数据。冰芯数据分辨率为1年,湖芯数据2~20年,数据包含汞浓度数据和沉降通量数据。
康世昌
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)2019-2020年自动气象观测数据。枪勇冰川记录包含1.5米温度、1.5米湿度、2米风速、2米风向、地表温度等数据。该自动气象站的数据采用USB离线获取的方式收集,初始记录时间为2019年8月6日19时10分,记录间隔为10分钟,2019年10月24日现场下载数据,未能连接上。2020年12月20日16:30到现场下载数据,仍然无法连接到电脑,于是将数采仪取回带到北京后将数据读出。数据未缺失,但风速数据在2020年7月14日9:30之后有问题(极可能是风向标被破坏所致)。甲岗山冰川初始记录时间为2019年8月9日15时00分,记录间隔为1分钟,电源主要是通过蓄电池和太阳能板来维持。该自动气象站无内部存储,数据每小时通过GPRS上传至HOBO网站,由专人定期下载。2020年1月5日23:34,1.5米温湿度传感器出现异常,温度和湿度数据丢失。2020年6月30日21:20之后所有数据完全无法通过网站下载。2020年12月19日将数采仪取回,下载到2020年6月23日19:43至9月25日3:36的数据。之后更换温湿度传感器,于12月21日12:27重新开始观测。目前数据由三段组成(2019.8.9-2020.6.30;2020.6.23-2020.9.25;2020.12.19-2020.12.29),经检查,数据有部分缺失,个别数据因记录电池电压,时间上有重复,需要核对。甲岗山冰川前端气象观测数据使用美国ONSET 公司HOBO RX3004-00-01型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。枪勇冰川前端气象观测数据使用美国ONSET 公司HOBO U21-USB型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。
张东启
本数据集是在东绒布冰川通过野外架设气象站实测获得的气象观测资料,以excel形式存储,内含2个数据列表:Surface_energy_budget和Cycle。Surface_energy_budget数据集包括四分量辐射,风速风向温度湿度(1.5 m和2.5 m)。与辐射相关的气象要素为:向下短波、反射短波、向下长波、向上长波、净短波、净长波、净辐射、感热、潜热、地下传导热、云量(cloud index_根据Faiver et al. 2004, JGR)、南亚季风指数、反照率;Cycle列表,是5-7月气象要素的日循环值;第1行字段名称前缀“1”、“2”和“3”表示观测期的三个时段,分别是:1 May-28 May、29 May -16 June、17 June - 22 July。
刘伟刚
横断山冰川的消融观测,主要在贡嘎山东坡海螺沟冰川和贡嘎山西坡大、小贡巴冰川上进行。另外,在玉龙山东坡白水1号冰川上也作了一些消融观测。从上述两条山脉四条冰川的消融观测来看,还是有一定的区域代表性,使它们反映出横断山冰川消融的基本情况。本数据集记录了不同时间不同地点观测点的冰川消融数据:1982 年6-8月,玉龙山东坡白水1号冰川海拔4200m、4 600m和4800m三个高度的冰面消融观测数据。1982 年8月27日至1983 年8月底,贡嘎山东坡海螺沟冰川舌部不同高度的全年实测数据。1982年7月12日至1983年8月6日,贡嘎山西坡贡巴冰川消融观测数。
李吉均
该数据集为可可西里地区冰川分布状况记录,包含了可可西里地区各山地现代冰川分布状况,可可西里地区各流域现代冰川分布, 可可西里地区不同山地高度段内现代冰川分布状况三个表格。地处青藏高原腹地的可可西里地区,平均海拔在5000m以上,气候严寒。根据中国冰川目录和作者在1/10万地形图上重新统计,全区发育现代冰川437条,覆盖面积达1552.39平方千米,冰储量为162.8349立方千米,成为本区众多河流湖泊水体的重要补给源泉。通过该数据集可以更加深入了解该区冰川分布规律等。
李炳元
该数据集包含纳木那尼冰川(北支)2008-2018年的年物质平衡数据,侧碛和末端自动气象站2011-2019年日气象数据及冰面上2018-2019年的月均气温和相对湿度数据。 冰川物质平衡数据观测时间为每年9月底或10月初,采用冰面测杆和雪坑结合的方法进行观测,获取测杆点的物质平衡数据,然后计算整条冰川的年净物质平衡(具体方法见参考文献)。 2台自动气象站(AWSs,Campbell公司)分别安装在纳木那尼冰川侧碛和末端。AWS1观测时间为2011年10月1日-2018年11月30日,观测数据包括气温(℃)、相对湿度(%)、太阳辐射(W/m2),仪器半小时记录一次气象资料。AWS2观测时间为2010年10月19日-2018年11月30日,观测数据包括风速(m/s)、大气压(hPa)、降水 (mm),仪器每小时记录一次气象资料。首先剔除原始记录中的少量异常数据,然后计算这些参数的日值。数据质量方面:原始数据质量较好,缺失较少。 两个温湿度探头(型号:Hobo MX2301)于2018年安装于冰面,半小时记录一次数据。将半小时数据处理为月均值。原始数据质量较好,没有缺失。 数据以excel文件存储。 该观测资料可以为研究喜马拉雅西段北坡气候、冰川、水资源及其之间的关系提供重要的基础数据,可供研究气候、水文、冰川等的科研工作者使用。
赵华标
本数据集包括南极冰盖花杆、冰(雪)芯/雪坑、自动气象站高度仪和探地雷达观测的日平均、年平均和多年平均表面物质平衡数据。数据来自已发表的文献,数据报告及国际数据共享平台,经质量控制后,形成了到目前为止最为完善的南极冰盖表面物质平衡日、年和多年分辨率的数据集,其中年分辨率表面物质平衡数据跨度过去1000年。该数据集主要用于冰川学、气候学及水文学等学科领域,特别地可用于南极表面物质平衡时空变化定量分析,气候模式验证,驱动冰盖模式和粒雪化模型等等。
王叶堂
该数据提供了南极冰盖2013年-2019年间的年度冰流速产品,该产品是第一个采用Landsat 8 光学影像的全色波段(15米分辨率)获取的南极冰川流速年度产品。所使用的影像时间段为2013年12月-2019年4月。该南极年度冰流产品共采用了超过8万景Landsat 8影像,超过25万景形变测量结果。洲际冰流速产品采用了非局部均值滤波误差处理方法,裸岩区域作为标定的处理方法,提高了冰流的细节和定位精度。是至今为止南极覆盖最全、分辨率最高的年度产品。该产品可以作为评估南极冰盖物质平衡的重要基础资料,也可以作为冰川模型的标定产品。
沈强
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月南极冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE-FO (2018年六月至今)。由于GRACE和GRACE-FO之间有一年左右数据间断,我们额外采用了由欧洲空间局ESA的Swarm星座GPS数据反演得到的重力场数据(2013年12月至2019年12月)。所采用GRACE重力场数据为德州大学奥斯丁空间研究中心(CSR)、德国地学研究中心(GFZ)、美国宇航局喷气推进实验室(JPL)以及俄亥俄州立大学(OSU)四家机构发布产品的加权平均模型。GRACE数据后处理包括:用SLR数据解算结果替换GRACE低阶重力场参数(degree-1, C20和C30),去条带滤波,300公里高斯平滑,ICE6-G_D(VM5a)GIA模型,信号泄露误差改正,椭球误差改正等。
张宇, 沈嗣钧
青藏高原五大河源区冰川径流数据集覆盖时间从1971年到2015年, 时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源)。 数据以多源遥感和实测数据为基础,使用青藏高原五大河源区及其周边气象站点日尺度气象数据、UMD-1KM的全球植被产品、IGBP-DIS土壤数据库、第一、二次冰川编目数据等驱动模型,耦合了冰川模块的分布式水文模型VIC-CAS模拟形成了冰川径流数据。并使用站点实测数据对模拟结果进行了验证, 增强质量控制。 数据指标包含:冰川径流率(Rate of glacier runoff: %),总径流(Total Runoff,mm/a),雪径流率(Rate of snow runoff: %),降雨径流率 (降雨径流率:%)。
王世金
这组数据是1974-2016年期间珠峰北坡绒布流域三条绒布冰川及表碛覆盖冰川三个时间段的年均冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由三个阶段的DEM高程差数据DHPRISM2006-DEM1974(DH2006-1974)、DHSRTM2000-DEM1974(DH2000-1974)、DHASTER2016-SRTM2000(DH2016-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHPRISM2006-DEM1974, or DH2006-1974, 是2006年PRISM2006 数据和1974年DEM1974之间的高程差,即DH2006-1974 =PRISM2006 – DEM1974。PRISM2006是由2006年12月4日的光学立体像对遥感数据ALOS/PRISM生成。DEM1974是由我国早期1:50,000地形图生成的,这两期DEM都采用横轴墨卡托投影、Krasovsky1940椭球体。PRISM2006与DEM1974配准后,非冰川区高程数据精度为±0.24 m a-1。DHSRTM2000-DEM1974(DH2000-1974)是,2000年SRTM与DEM1974的高程差,两期DEM数据配准后,非冰川区高程数据精度为±0.03 m a-1。DHASTER2016-SRTM2000(DH2016-2000)是基于Brun et al. (2017) 发布的冰面高程差数据,采用与DH2006-1974、DH2000-1974一样的数据处理方法与处理过程而得到, 在非冰川区高程数据精度为±0.08 m a-1。表格中包括的数据项有:Shape_Area,冰川面积(m2)、Name冰川名,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_16表示2000-2016年间冰川每年的冰面高程变化(m a-1),EC74_2006是1974-2006年间冰川年均冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_16表示2000-2016年每条冰川年均冰川物质平衡数据(m w.e. a-1),MB74_2006表示1974-2006年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2016表示2000-2016年间每条冰川每年的冰储量变化(m3w.e. a-1),MC74_2006表示1974-2006年间每条冰川每年的冰储量变化(m3w.e. a-1), Uncerty_EC,是每条冰川冰面高程变化的最大误差范围(m a-1)、Uncerty_MB,是每条冰川冰川物质平衡的最大误差(m w.e. a-1),Uncerty_MC, 是每条冰川冰储量变化的最大误差(m3w.e. a-1)。 MinUnty_EC,是每条冰川冰面高程变化的最小误差范围,MinUnty_MB,每条冰川冰川物质平衡的最小误差(m w.e. a-1),MinUnty_MC是每条冰川冰储量变化的最小误差(m3w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件