海冰的减少和表面融水的增加,可能诱发冰流加速和锋面塌陷,对格陵兰冰架的稳定性有重大影响。然而,由于稀少的遥感观测,快速崩解之前的详细冰动态前兆和驱动因素仍然不清楚。我们通过联合使用高时空分辨率的遥感观测和冰流模型,对格陵兰岛北部Petermann冰川2017年7月26日崩解事件前的水文和运动学前兆进行了全面调查。2017年7月期间的冰流速度场的时间序列是通过Sentinel-2的观测来检索的,采样间隔为次周。冰流速度在7月26日(崩解前一天)迅速达到30米/天,这大约是平均冰川速度的10倍。
江利明
冰川是全球气候变化的放大器和指示器,目前在全球气温升高的背景下,全球范围内冰川融化持续加快。跃动冰川是一种有着间歇性和周期性加速运动的冰川,其对气候变化非常敏感。本数据集基于Landsat和Sentinel系列多源光学卫星遥感影像数据,通过对影像进行筛选、拼接、裁剪获得研究区域影像。其中,对Landsat TM 影像中L1GS 级别影像采用二阶多项式进行配准校正,影像配准后误差小于一个像素。之后利用方向相关算法进行影像匹配,生成了格陵兰冰盖典型的跃动冰川——Sortebræ 冰川在1980s至2020 年期间不同阶段的表面运动速度。本数据集期望有助于对Sortebræ 冰川跃动过程的研究,以及对全球变暖背景下冰川跃动机理的探讨。
乔刚, 孙子翔, 袁小涵
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
冰盖表面融化是影响格陵兰冰盖物质平衡的主要原因,同时冰雪的反射率较高,冰盖表面融化会造成辐射能量收支差异,进而影响海-陆-气之间能量交换。高分辨率冰盖表面融化产品的生成,对研究格陵兰冰盖表面融化及其对全球气候变化的响应提供重要信息支撑。本数据集基于微波辐射计与光学反照率产品,对微波辐射计当日、冬季(12-次年2月)平均和1月平均进行波段合成,利用Gram-Schmidt方法将微波辐射计波段合成数据与MODIS GLASS反照率产品融合,使其空间分辨率从25 km提高至0.05˚。然后基于微波辐射计当日与冬季亮温差值的阈值法对降尺度结果提取格陵兰冰盖表面融化,得到1985年、2000年、2015年格陵兰冰盖表面0.05˚ 每日融化产品。该数据集0.05˚ 的空间分辨率高于目前国内外已发布数据集,凸显了辐射计和反照率数据对表面融化的响应,空间细节特征更加清晰,保持了原辐射计产品的动态范围,有效地抑制了辐射计噪声。该数据集的数据类型为整型,其中1代表融化,0代表未融化,255代表冰盖以外掩膜区域,数据集以“*.nc”格式存储。
魏思怡, 刘岩
同济大学沈云中教授卫星重力团队利用GRACE Level-1B卫星重力数据解算了2002年至2016年的格陵兰区域质量变化时间序列,空间分辨率为1度×1度,时间分辨率为1个月。该时间序列的参考时间为2004年1月与2009年12月之间的中间时刻。 在数据处理过程中,采用ICE5G模型扣除冰后回弹GIA影响,同时利用德国地学研究中心最新发布的AOD1B RL06去混频模型,回加了GAD质量变化贡献。
沈云中
冰盖高程变化数据首先利用2004年和2008年的GLAS12的数据获取两年间的重复轨道,在理想情况下每个轨道都是严格重复测量的,但由于轨道偏差,无法保证轨道按照设计严格重复,偏差在几米到几百米不定,取500m*500m的格网,认为落在同一格网内的点为重复轨道的重复点,相减获取2004-2008年的高程变化,获得年度的高程变化。在格陵兰中部地形平缓区域,高程变化较为准确,但在边缘地带,高程变化明显存在较大误差,可能是因为在边缘区域的坡度较大,500m*500m的范围内的点的高程会有较大的变化,因此在边缘区的高程变化有待改正。为对比不同的方法,采用2004年和2008年的GLAS12的春季数据获取这两年间的交叉点,2004年的降轨与2008年的升轨可以获得一组交叉点对应的高程变化;2004年的升轨与2008年的降轨也可以获得一组交叉点对应的高程变化。两组交叉点作为2004年到2008年的高程变化数据,采用克里金插值获得高程变化图。采用交叉点的方法获取的高程变化得到在边缘区域的结果有明显的改善,但在格陵兰东中部部分区域内的高程变化趋势有明显的误差,这些误差可能是季节性变化引起的。因此,采用2004年到2008年的GLAS12的春季数据获取每两年间的交叉点,每两年可以获得两组交叉点数据,总共获得十组交叉点。将这十组交叉点作为2004年到2008年的高程变化数据,与前两次比较发现,高程变化精度有所提高。
黄华兵
Greenland遥感影像拼接图是在收集了2014-2015年间108景Landsat8 OLI遥感影像,经过DN值校正、去云计算、行星反射率计算、反射率与RGB值转换、影像合成与拼接等操作后制成。全图空间分辨率为30m,投影方式采用极射赤面投影。
陈卓奇
Sentinel-1A/B卫星使用近极地太阳同步轨道,轨道高度693 km,轨道倾角98.18°,轨道周期99 min,搭载了C波段合成孔径雷达(SAR),设计使用寿命为7年(预期12年)Sentinel-l 具有多种成像方式,可实现单极化、双极化等不同的极化方式。Sentinel-1A SAR共有4种工作模式:条带模式(Strip Map Mode,SM)、超宽幅模式 (Extra Wide Swath,EW)、宽幅干涉模式 (Interferometric Wide Swath,IW) 和波模式 (Wave Mode,WV)。A星于2014年4月成功发射,同一区域重访周期为12天,B星2016年4月成功在轨运行,目前重返周期达到3-6天,双星运行以后,南极地区S1数据获取频率大幅度增加。 本数据集为南极冰盖和格陵兰冰盖地区哨兵一号SAR数据。 该数据波段为C波段超宽幅地距多视数据,分辨率为20m*40m, 时间分辨率和往返周期有关,为12天,幅宽为400km,噪声水平为-25dB,辐射测量精度1.0dB。 本数据每年覆盖时间为:南极10月到来年3月,格陵兰4月到9月;覆盖范围南极冰盖冰架地区和格陵兰冰盖。
张露
由美国发起的格陵兰冰盖计划 (GISP2),提供了一个10万多年的氧同位素详细资料,几乎覆盖了整个冰期-间冰期循环。该数据记录了过去818-1987年氧同位素变化,其中清晰记录小冰期为该过去1000年来最冷的时期。其中1850-1987年呈现出波动增温,其变化与格陵兰获取的GRIP、NGRIP及最新的NEEM冰芯变化一致,反映了雪冰记录在格陵兰冰盖具有很好的一致性。 各变量的物理意义: 第一列:冰芯深度;第二列:氧同位素值;第三列:时间
杜志恒
南北极冰盖冻融数据集采用微波辐射计和微波散射计两种数据获取。微波辐射计数据覆盖时间从1978年到2015年,空间分辨率为25 km;微波散射计数据覆盖时间从2000年到2015年,空间分辨率为4.45km.时间分辨率为逐日,覆盖范围为南北极冰盖。基于微波辐射计的遥感反演方法采用改进的基于小波冰盖冻融探测算法,算法考虑冰盖冻融亮温特性在时间上的变化,首先利用小波变换对格陵兰所有冰盖区域的长时间亮度温度数据进行小波多尺度分解,在不同尺度下对边缘信息进行分析。再次,采用方差分析的方法将冰盖融化和重新冻结过程产生的边缘信息从噪声中分离出来。基于已提取的冰盖长时间亮度温度变化边缘信息,利用广义高斯模型来确定干雪和湿雪分类的最优边缘阈值, 从而探测出格陵兰冰盖发生融化的区域。最后,基于空间自动纠错的原理,运用空间邻域纠错算子对由噪音引起的错误结果进行探测,并进行人工纠错。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在冻融提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明格陵兰冰盖冻融探测精度在70%以上。基于微波辐射计的遥感反演方法考虑积雪特性在时空和空间上的变化,首先提取散射计数据的DVPR时间序列数据,有效利用散射计数据的高时间分辨率,同时利用通道差去除地形带来的影响;随后利用广义高斯模型对每一个采样点时间序列的方差值进行拟,以此来区分出干湿雪点,即确定融化范围,这种广义高斯模型相比于传统的双高斯模型需要的输入参数少,得到的阈值也具有唯一性;最后利用移动窗分割算法来精确找到湿雪点的融化开始时间、 结束时间以及持续时间, 可以有效地去除融化或非融化时期的温度突变所带来的影响。长时间序列星载微波散射计数据来自QSCAT和ASCAT两个传感器。通过实测站点的验证表明南极冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波辐射计的南极冻融数据每个文件由316*332的栅格组成,格陵兰冰盖冻融数据每个文件由304*448的栅格组成;基于微波散射计的南极冻融数据每个文件由810*680的栅格组成,格陵兰冰盖冻融数据每个文件由810*680的栅格组成(0值:非融化区域,1值:融化区域)。
李新武, 梁雷
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件