青海省湖泊储水总量实测和模拟数据集中包含四个子表:第一个子表是根据遥感影像数据监测得到2000年至2019年的时序湖泊面积数据;第二个子表是结合时序湖泊面积数据和面积-库容方程进行估算的结果;第三个子表存储基于湖泊水下三维模拟模型模拟得到湖泊的面积-容积方程;第四个子表为青海省24个典型湖泊储水量实测和模拟关键参数与结果数据,其中包含每个湖泊的模拟水深、最大水深、模拟时的参考水位与对应的湖泊面积。
方纯, 卢善龙, 鞠建廷, 唐海龙
格陵兰数字高程模型 (DEM) 对于实地工作、冰速计算和质量变化估计是必不可少的。以前的 DEM 已经为整个格陵兰岛提供了合理的估计,但应用源数据的时间跨度可能会导致质量变化估计偏差。为了给 DEM 提供一个特定的时间戳,我们从 2018 年 11 月到 2019 年 11 月应用了大约 5.8×108 ICESat-2 观测来生成一个新的 DEM,包括格陵兰周边的冰盖和冰川。时空模型拟合过程分别在 500 m、1,2 和 5 km 网格单元上执行,最终 DEM 以 500 m 分辨率发布。通过模型拟合获得总共98%网格的高程,剩余的DEM空洞通过普通克里金插值法估计。与机载地形测绘仪 (ATM) 激光雷达系统获取的 IceBridge 任务数据相比,ICESat-2 DEM 的最大中值差异估计为 -0.48 m。通过模型拟合和插值获得的网格的性能相似,都与 IceBridge 数据非常吻合。 DEM 的不确定性在低纬度和高坡度或粗糙度区域增加。此外,与其他高度计衍生的 DEM 相比,ICESat-2 DEM 显示出显着的精度提高,并且精度与立体摄影测量和干涉测量的精度相当。总体而言,ICESat-2 DEM 在各种地形条件下均表现出精度稳定性,可以提供具有高精度的特定时间戳 DEM,这将有助于研究格陵兰岛海拔和质量平衡变化。
范宇宾, 柯长青, 沈校熠
1970年土地利用由MSS影像目视解译而成,整体解译精度达90%以上,土地分类按照中国科学院土地利用分类系统进行,具体分类细则请阅读数据说明文档。 2005年和2015年两期数据集从欧洲太空局 (ESA) 全球土地覆被类型数据获取,包括中亚五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)和中国新疆,该数据集有22种土地利用类型,采用IPCC土地利用分类系统,具体分类细则请参阅说明文档。
张弛, 罗格平
利用长时间序列Landsat遥感数据,获取了整个青藏高原近50年(1970s~2021)共15期湖泊观测数据,对大于1平方公里湖泊的数量及面积变化进行了详细分析。研究发现青藏高原湖泊数量从1970年代的1080个增加到2021年的~1400个。相应地,湖泊面积从1970年代的4万平方公里增加到了2021年的5万平方公里,净增加了1万平方公里。青藏高原湖泊并非持续单调地增加。在1970s至1995年间,大部分湖泊呈现萎缩状态;但在1995年之后,除2015年外,青藏高原湖泊的数量和面积总体呈现出持续增加趋势。流域尺度上,除雅鲁藏布流域外,均在扩张。
张国庆
积雪面积比例(fractional snow cover, FSC)是定量描述单位像元内积雪覆盖面积(Snow Cover Area SCA)与像元空间范围的比值。本数据集涵盖区域为北极地区(北纬35°至北纬90°),使用Google Earth Engine平台,采用的初始数据为MOD09GA 分辨率为1000m的全球地表反射率产品,数据制备时间为2000年2月24日至2019年11月18日。方法为:在训练样本区域,使用Landsat 8地表反射率的数据和SNOMAP算法制备FSC的参考数据集,将该数据集作为训练样本区域FSC真值,从而建立训练样本区域FSC与基于MODIS地表反射率产品的雪被指数NDSI之间的线性回归模型。使用该模型,将MODIS全球地表反射率产品作为输入,制备北极地区积雪面积比例时序数据。该数据集可为区域气候模拟、水文模型等提供积雪分布的定量信息。
马媛, 李弘毅
基于2015年夏季Landsat8 OLI遥感影像,提取覆盖“一带一路”范围内的典型样点该影像的光谱特征值。波段包括band (0.45 - 0.51μm)、band (0.53 - 0.59μm)、band (0.64 - 0.67μm)、band (0.85 - 0.88μm)、band (1.57 - 1.65μm)、band (2.11 - 2.29 μm)、band (10.60 - 11.19 μm)和band (11.50 - 12.51 μm)等八个,同时基于“一带一路”区域土地利用数据(V1.0)(2015)提取了每个样地的土地覆被/利用类型(10个)。数据包括excel格式和shp格式,shp数据文件为光谱特征数据集每个样地的空间分布及光谱信息。
许尔琪
结合Landsat影像(4215景)、地形图,利用半自动水体提取及人工目视检查编辑,完成了过去60多年来(1960s, 1970s, 1990, 1995, 2000, 2005, 2010, 2015, 2020)详细的中国湖泊(大于1平方公里)数量与面积变化研究。从1960s到2020年,中国湖泊总数量(≥ 1 km^2)从2127个增加到2621个,面积从68537 km^2扩张到82302 km^2 。
张国庆
本数据集根据最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长序列(1981-2013)均一化植被指数产品,版本号3g,先将NDVI数据产品从1/12度空间分辨率重采样到0.5度,然后对每年的时间序列采用double-logistic方法进行平滑,并计算平滑后的曲率,选取春季曲率最大值作为植被的春季返青期,该数据可分析泛北极植被春季物候的时空特征。
徐希燕
本数据集是2010年青藏高原地区的土地覆被数据,数据为栅格TIFF格式,空间分辨率为300米,包含耕地、林地、草地、水体、城市用地等22个大类,可用于青藏高原城镇化与生态环境交互胁迫的地理本底研究。该数据来自欧空局CCI-LC项目生产的土地覆被数据产品。该数据集采用了WGS84的地理坐标系统,有22个大类。数据的生产融合多种卫星数据资料,包括MERIS FR/RR,AVHRR,SPOT-VGT,PROBA-V等。经验证,该数据集的总体精度在70%以上,当然精度会在不同的地区和覆被类型上存在差异。
杜云艳
数据包含青藏高原地区的土壤有机质数据,空间分辨率为1km*1km,时间覆盖范围为1979-1985年。数据来源是基于第二次土壤普查数据生成的土壤碳含量。土壤有机质主要来源于植物、动物及微生物残体,其中高等植物为主要来源。原始土壤中最早出现在母质中的有机体是微生物。随着生物的进化和成土过程的发展,动物、植物残体及其分泌物就成为土壤有机质的基本来源。数据对于分析青藏高原的生态环境以及衡量区域土壤特征具有重要意义。
方华军
中亚地区2017年输沙势数据集,为tif格式。其空间范围涵盖里海在内的中亚五国地区,包括乌兹别克斯坦、哈萨克斯坦、土库曼斯坦、塔吉克斯坦和吉尔吉斯坦。此输沙势为绝对输势,即各个方向的输沙通量的综合,不考虑输沙势的方向。该数据由GLDAS全球三小时同化数据提取计算获得。时间分辨率为月,空间分辨率为0.25°,时间范围为2017年。该数据可以作为沙尘传输模型的重要参数输入,也可用于评估中亚五国沙通量的总体分布情况。该数据集可作为风沙灾害评估的重要参考数据。
高鑫
青藏高原地区属于高原山地气候,气温及其季节变化一直是全球气候变化研究的热点之一。 数据包含青藏高原地区的气温数据,空间分辨率为1km*1km,时间分辨率为月、年,时间覆盖范围为2000年、2005年、2010年、2015年。数据通过对青藏高原地区国家气象站数据进行Kring插值得到。 数据可用于分析青藏高原的气温的时间空间分布情况,此外数据还可用于分析青藏高原的气温随时间变化的规律,对青藏高原的生态环境研究有重要意义。
方华军
“黑河流域生态-水文综合地图集”获黑河流域生态-水文过程集成研究-重点项目的支持,旨在面向黑河流域生态-水文过程集成研究的数据整理与服务,图集将为研究人员提供一个全面而详实的黑河流域背景介绍及基础数据集。 黑河流域生态水文综合地图集:黑河流域遥感镶嵌图,比例尺1:2500000,正轴等积圆锥投影,标准纬线:北纬 25 47 数据源:黑河流域2010年TM影像数字镶嵌图,黑河流域行政边界数据、黑河流域河流数据集、黑河流域居民点数据等基础数据
王建华, 赵军
SRTM的传感器有两个波段,分别是C波段和X波段,我们现在使用的SRTM都自于C波段。公开发布的SRTM数字高程产品包括三种不同分辨率的DEM 数据: * SRTM1 覆盖范围仅仅包括美国大陆,其空间分辨率为1s ; * SRTM3 数据覆盖全球, 空间分辨率为3s,这是目前使用最为广泛的数据集,SRTM3的高程基准是EGM96的大地水准面,平面基准是WGS84;标称绝对高程精度是±16m,绝对平面精度是±20m。 * SRTM30 数据同样覆盖全球 ,分辨率是30s. SRTM数据存在多个版本,早期的SRTM数据由NASA“喷气推进实验室”(JPL ,Jet Propulsion Laboratory)地面数据处理系统( GDPS)来完成的,数据被称为SRTM3-1。美国国家地理空间情报局对数据做了更进一步的处理,缺少情况得到明显改进,数据称为SRTM3-2。 该数据集主要是第四版本由 CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。插值算法来自于Reuter et al.(2007) SRTM的数据组织方式为:每5度经纬度方格划分一个文件,共分为24行(-60至60度)和72列(-180至180度)。文件命名规则为srtm_XX_YY.zip,XX表示列数(01-72),YY表示行数(01-24)。 数据分辨率90米 数据使用:SRTM的数据是用16位的数值表示高程数值的(-/+/32767米),最大的正高程9000米,负高程(海平面以下12000米)。空数据用-32767标准
CGIAR-CSI
“黑河流域生态-水文综合地图集”获黑河流域生态-水文过程集成研究-重点项目的支持,旨在面向黑河流域生态-水文过程集成研究的数据整理与服务,图集将为研究人员提供一个全面而详实的黑河流域背景介绍及基础数据集。 黑河流域1:10万地形分幅索引是图集基础地理篇中一幅,比例尺1:2500000,正轴等积圆锥投影,标准纬线:北纬25 47 数据源:1:10万地形图索引数据、黑河流域边界
赵军, 王建华
中国长序列地表冻融数据集——决策树算法(1987-2009)是利用被动微波遥感 SSM/I亮度温度资料通过决策树分类提取得到。 该数据集采用EASE-Grid投影方式(等积割圆柱投影,标准纬线为±30°),空间分辨率25.067525km,提供逐日的中国大陆主体部分的地表冻融状态分类结果。数据集按年份存放,共由23个文件夹组成,从1987到2009。每个文件夹里包含当年的逐日地表冻融分类结果,为ASCII码文件,命名规则为:SSMI-frozenYYYY***.txt,其中YYYY代表年,***代表儒略日(001~365/366)。冻融分类结果txt文件可直接用文本程序打开察看,还可用ArcView + Spatial Analyst扩展模块或者Arcinfo的Asciigrid命令打开。 提取地表冻融的原始数据来源于由美国国家雪冰数据中心(NSIDC)处理的1987 年以来的逐日被动微波数据,这一数据集采用EASE-Grid(等面积可扩充地球网格)作为标准格式。 中国地表冻融长时间序列数据集——决策树算法(1987-2009)属性由该数据集的时空分辨率、投影信息、数据格式组成。 时空分辨率:时间分辨率为逐日,空间分辨率为25.067525km,经度范围为60°~140°E,纬度为15°~55°N。 投影信息:全球等积圆柱EASE-Grid投影,关于EASE-Grid投影的详细信息见数据准备中关于这种投影的说明。 数据格式:数据集由1987到2009共23个文件夹组成,每个文件夹里包括当年的逐日地表冻融分类结果,按日存储为txt文件。文件命名规则:例如SMI-frozen1994001.txt代表1994年第1天的地表冻融分类结果。该数据集的ASCII码文件是由头文件和主体内容构成。头文件包括行数、列数、x-轴左下点坐标、y-轴左下点坐标、栅格大小、无数据区标值等6行描述信息组成;主体内容为根据行数列数组成的二维数组,以列为优先进行排列,数值为整数型,从1到4,1代表冻结,2代表融化,3代表沙漠,4代表降水。因为该数据集中的所有ASCII码文件所描述的空间为我国全国范围,所以这些文件的头文件是不变的,现将头文件摘录如下(其中xllcenter, yllcenter和cellsize单位为m): ncols 308 nrows 166 xllcorner 5778060 yllcorner 1880060 cellsize 25067.525 nodata_value 0 该数据集中的所有ASCII码文件可以直接用文本程序(如记事本)打开。除了头文件,主体内容为数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表降水。如果要用图示来显示的话,我们推荐用ArcView + 3D 或 Spatial Analyst 扩展模块来读取,在读取过程中会生成grid格式的文件,所显示的grid文件就是该ASCII码文件的图形表达。读取方法: [1] 在ArcView软件中添加3D或Spatial Analyst扩展模块,然后新建一个View; [2] 将View激活,点击File菜单,选择Import Data Source选项,弹出Import Data Source选择框,在此框中的Select import file type:中选择ASCII Raster,自动弹出选择源ASCII文件的对话框,点击寻找该数据集中的任一个ASCII文件,,然后按OK键; [3] 在Output Grid对话框中键入的Grid文件名字(建议使用有意义的文件名,以便以后自己查看)和点击存放此Grid文件的路径,再次按Ok键,然后按Yes(要选择整型数据),Yes(把生成grid文件调入到当前的view中)。生成的文件可以按照Grid文件标准进行属性编辑。这样就完成了显示将ASCII文件显示成Grid文件的过程。 [4] 批处理时,可以使用ARCINFO的ASCIIGRID命令,编写成AML文件,再用Run命令在Grid模块中完成: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}
晋锐, 李新
该数据集为2000年2月24日至2004年12月31日,分辨率为 0.05度,MODIS数据,数据格式为.hdf,可以用HDFView打开,数据质量良好,缺失的日期如下: 2000年 1-54 132 219-230 303 2001年 111 167-182 2002年 079-086 099 105 2003年 123 324 351-358 2004年 219 349 其中年后面的数字为该年的第n天 Pixel values are as follows: 0: Snow-free land 1-100: Percent snow in cell 111: Night 252: Antarctica 253: Data not mapped 254: Open water (ocean) 255: Fill 文件命名举例如下: Example: "MOD10C1.A2003121.004.2003142152431.hdf" Where: MOD = MODIS/Terra 2003 = Year of data acquisition 121 = Julian date of data acquisition (day 121) 004 = Version of data type (Version 4) 2003 = Year of production (2003) 142 = Julian date of production (day 142) 152431 = Hour/minute/second of production in GMT (15:24:31) 角点坐标为: Corner Coordinates: Upper Left ( 70.0000000, 54.0000000) Lower Left ( 70.0000000, 3.0000000) Upper Right ( 138.0000000, 54.0000000) Lower Right ( 138.0000000, 3.0000000) 其中Upper Left 为左上角,Lower Left 为左下角,Upper Right 为右上角,Lower Right 为右下角。 数据行列数分别为 1360, 1020 地理经纬度坐标,具体信息如下: Coordinate System is: GEOGCS["Unknown datum based upon the Clarke 1866 ellipsoid", DATUM["Not specified (based on Clarke 1866 spheroid)", SPHEROID["Clarke 1866",6378206.4,294.9786982139006, AUTHORITY["EPSG","7008"]]], PRIMEM["Greenwich",0], UNIT["degree",0.0174532925199433]] Origin = (70.000000000000000,54.000000000000000)
National Snow and Ice Data Center(NSIDC)
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件