面向中亚五国农业可持续发展,以耕地为目标,从土地资源开发利用风险角度开展了土地资源脆弱性评价。以耕地为目标的土地资源开发利用风险评价因子包括:地形因子(高程、坡度)、土地利用类型、土壤质地等,农业可持续发展评价因子包括:人均GDP、人均谷物产量、农业经济增长率、城市化水平、人口自然增长率、土壤有机质含量等。将上述指标中直接代表土地资源属性的土地利用类型、土壤质地、土壤有机质含量等作为土地资源脆弱性评价指标,基于指标加权平均获取了土地资源脆弱性,并将土地资源脆弱性评价作为土地资源开发利用风险评价的一部分,进行土地资源开发利用风险评估时采用多元线性回归方法确定土地资源脆弱性评价指标的权重。数据提供了1995s (1992-1996), 2000s (1997-2001), 2005s (2002-2006), 2010s (2007-2011), 2015s (2012-2017)和1995-2015六个时间段的中亚五国土地资源脆弱性,空间分辨率为0.5°×0.5°。数据集可为中亚五国土地资源开发利用和农业发展等提供基础数据支撑。
李兰海, 黄法融
1)沙尘、硫酸盐、有机碳、黑碳和海盐气溶胶以及总气溶胶的光学厚度、垂直质量浓度和消光系数; 2)数据来源:数值模拟,加工方法:基于CALIPSO卫星垂直观测和全球气溶胶模式,通过四维局地集合转换卡尔曼滤波同化方法产生; 3)数据质量良好; 4)该气溶胶同化数据时空覆盖完整,可用于泛第三极地区气溶胶及其化学组分的时空分布特征及其演变规律研究,还可用于气溶胶-云互馈对降水和水汽输送及其辐射、气候以及环境效应研究。
戴铁, 程越茗
CMIP5(Coupled Model Intercomparison Project Phase 5)是气候耦合模型相互比较项目的第五阶段实验,提供了一个多气候模式环境,可用于预估“一带一路”关键节点区域未来气候变化,以应对关键节点区域的环境气候问题。本数据集以“一带一路”关键节点区域为研究区,对CMIP5的43个气候模式对研究区未来气候变化的预估能力进行评估,以模拟结果的均方根误差为标准,分别选取RCP4.5及RCP8.5情景下模拟能力最优的气候模式,对研究区进行气候模拟,得到研究区2006至2065年降雨量、气温的未来预估数据,并使用统计降尺度方法使数据集空间分辨率达到10km,时间分辨率为每月。每一期数据具有三个波段,分别是气温最大值、气温最小值和降雨量。本数据集中,降雨量单位为kg/(m^2*s),气温单位为K。本数据集为应对关键节点区域的环境气候问题提供数据基础。
李炘妍, 凌峰
中亚农业水资源脆弱性数据集基于气象、土地覆盖、地形和社会经济数据, 依据脆弱性概念框架, 从暴露度、敏感度和适应度 3 个方面选取 18 个指标, 建立了农业水资源脆弱性评价指标体系, 采用等权重法和主成分分析法确定指标权重, 对中亚农业水资源脆弱性进行了评价及特征分析。对部分原始各个栅格数据进行比较,从原始目标栅格最左上角开始,依次向相邻的右、下栅格延伸,四个栅格(即0.5°)取中位数合并为一个栅格,并且该中位数作为四个栅格中心点对应的地理坐标的数值,消除栅格间的极端数值情况。数据提供了1992-1996、1997-2001、2002-2006、2007-2011、2012-2017和1992-2017六个时间段,空间分辨率为0.5°乘以0.5°。数据集可为中亚五国农业水资源供需和开发利用分析等提供基础数据支撑。
李兰海, 于水
该数据提供了青藏高原内陆流域582个面积大于1平方公里的湖泊从1986-2019的年湖泊面积。 首先根据JRC和SRTM DEM数据,识别研究区内582个大于1 km2的湖泊。利用Landsat5/7/8所有覆盖湖泊的遥感影像合成每年的Landsat影像,根据NDWI指数和Ostu算法动态分割每个湖泊,并据此计算每个湖泊1986-2019年湖泊面积大小。 本研究基于Landsat卫星遥感影像,利用Google Earth Engine 处理了所有Landsat影像,建立了至今为止最全的青藏高原地区大于1平方公里的年湖泊面积数据集;开发了一套湖泊面积自动提取算法,实现单个湖泊多年面积的批量计算;该数据对分析青藏高原地区湖泊面积动态、水量平衡,及研究青藏高原湖气候变化有重要意义。
朱立平, 彭萍
通过资料整理和数字化,基于ArcGIS平台,构建了西亚地区地震区划图。地震区划图以伊朗地震研究机构的图件为基础,并广泛收集最新的活动断裂研究资料,图件范围包括伊朗及周边国家和地区,图中标绘了发震断层(活动断层)的位置、活动性质和主要参考文献资料,以及1960年至2019年5级以上地震的震中位置。区划图中以未来50年超越概率10%的地震动加速率峰值(PGA)为指标,进行地震危险性分区。图件可用于西亚地区的活动构造和地震灾害研究,为西亚地区的大型工程与基础设施建设提供地震安全保障。
刘志成
一个具有完整全球海洋覆盖范围的网格化海洋温度数据集是了解气候变化和气候变异性的一个非常有价值的资源。大气物理研究所(iap)通过若干创新步骤,对1990年以来2000米高空的历史海洋地下温度进行了新的客观分析。第一种方法是使用一组更新的过去的观察结果,这些新的观测结果已经被纠正了偏差(例如,在地震中)。XBT偏置校正CH14方案,XBT社区推荐。第二个是在海洋中不同地方的值之间使用协变性和来自包括一个全面海洋模型的若干气候模型的背景信息。第三个是扩大每个观测对较大区域的影响,认识到南大洋广阔开放的广阔空间的相对同质性。然后,这些观测也被用来提供更精细的尺度细节。最后,通过使用最近观测到的海洋状态的知识仔细地评估了新的分析,但是使用更遥远的过去的观测的稀疏分布进行次采样,以表明该方法产生无偏的历史重建。 海面风场数据集使用RSS第7版微波辐射计风速数据构建。输入的微波数据由遥感系统处理,资金来自美国宇航局测量计划和美国宇航局地球科学物理海洋学计划。 该风速产品用于气候研究,因为输入数据经过了仔细的相互校准和一致的处理。每个netCDF文件包含: 1)风速月平均值,网格尺寸360x180x自1988年1月以来所有月份的数量(随时间增加); 2)一组12个月的气候学风速,网格大小为360x180,气候学是1988-2007年20年期间计算的平均值; 3)从1988年1月以来360x180x#个月的月平均数减去上述气候图得出的风速月异常(随时间增加); 4)风速趋势图,网格尺寸360x180,趋势计算时间为1988-01-01至最近完整日历年;5)时间纬度图(有效数据至少需要10%的纬度单元),网格尺寸为自1988年1月起180 x#个月(随时间增加)
葛咏, 李强子, 董文
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。土壤相对湿度指数是表征土壤干旱的指标之一,能直接反映作物可利用水分的状况。
葛咏, 吴骅
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。相对湿润度指数为某段时间的降水量与同时段内潜在蒸散量之差再除以同时段内潜在蒸散量得到。降水量数据来自TRMM/GPM卫星降水数据降尺度,潜在蒸散量的估算采用Thornthwaite方法。详细算法请参考《气象干旱国家标准》(GB/T 20481-2017)。数据仅覆盖一带一路沿线34个关键节点区域。
吴骅
土地覆盖数据是了解人类活动与全球变化之间复杂相互作用的关键信息来源。基于清华大学制作的30 m分辨率的FROM-GLC全球土地覆盖产品,利用34个泛第三极关键节点区域矢量对其进行裁剪等处理,获得本数据集。本数据集的一级分类体系为:10.农田;20.森林;30.草地;40.灌木丛;50.湿地;60.水体;70.苔原;80.不透水面;90.裸地;100.冰雪;120.云。其数据质量取决于FROM-GLC产品质量,本数据集作为所有遥感数据的研究基础,为项目提供了基底数据。
葛咏, 凌峰, 张一行
Koppen Geiger 气候类型地图为Rubel(2017)降尺度后的高分辨率格点数据集,提供了两个数据子集:一个数据Netcdf文件和一个用于单独可视化的NCL代码。数据集代表了1986-2010年的气候类型分布,分辨率为5弧分(1/12度,约10km)。 使用Rubel等人(2017)发展的降尺度算法,重新分析的Köppen-Geiger气候类型数据得到了5弧分的高分辨率版本。它代表了最近的25年气候类型的分布。 此外,颜色表针对更高的分辨率进行了优化,导致地图外观略有不同。
何永利
数据来源于美国地质勘探局(USGS)开发的30秒全球高程数据集,于1996年完成。从NCAR和UCAR联合的数据下载中心(https://rda.ucar.edu/datasets/ds758.0/)下载了泛第三极区域的数据,并通过数据中心重新分发。GTOPO30在分发时将全球分为33个区块,采样间隔为30弧秒, 即0.008333333333333度,坐标参考为WGS84,其值为垂直方向高出海平面的距离,即海拔,单位为m,海拔范围-407到8752,这里不包含海洋深度信息,负值为大陆架的海拔;海洋处标记为-9999,海岸线以上大陆海拔至少为1;小于1平方千米的岛不考虑。详细说明信息请见说明文档。 为了便于用户使用方便,在分块数据的基础上,将-10S-90N,20W-180E内10个区块进行拼接,没有经过任何重采样处理。本数据文件为DEM_ptpe_Gtopo30.nc
何永利
泛第三极地区地震活动强烈,其地震活动的动力来源于印度板块、阿拉伯板块与欧亚板块的俯冲碰撞。在泛第三极地区(北纬0-56度,东经43-139度)1960年以来发生M≥6级地震3809次,其中M≥8级地震59次,M=7.0-7.9级地震689次, M=6.0-6.9级地震3061次。地震主要发生在印度板块与欧亚板块的碰撞边界印缅山脉、喜马拉雅山脉 、苏来曼山脉的山麓地区,以及阿拉伯板块与欧亚板块碰撞的扎格罗斯山脉地区。
王继
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件