该数据集记录了青海省格尔木市2012-2018年监测区地下水水位动态统计数据,同时按照年份和数量分类统计。数据整理自青海省自然资源厅官方网站。数据集包含7个数据表,分别为:2012、2013、2014、2015、2016、2017、2018年的格尔木监测区地下水水位动态统计,数据表结构相同。例如2012年的数据表共有5个字段: 字段1:年份 字段2:钾观5 字段3:观4 字段4:观39 字段5:钾观1
赵虎
青藏高原地面光谱数据集主要是利用光谱仪测定不同土地利用类型的光谱特征,测定的地物类型主要分为林地、(高寒)灌木、(高寒)草地、湿地、耕地与裸地等。包含拉萨、林芝、日喀则、阿里、那曲部分县区的实地观测点。林地数据采集测定植被不同生长阶段的光谱特征;草地数据采集测定不同覆盖度的光谱特征;耕地测定常见作物油菜花与青稞田块的光谱特征;湿地则主要测定长流水河流旁的湿地、低洼谷地自然形成的湿地、湖泊旁的湿地等;裸地则测定无植被覆盖的荒漠、戈壁、道路等的光谱特征。观测时间为2019年7-8月,数据为日观测数据。数据集可以为遥感解译的实地验证提供参考。
冯晓明
该数据集是来自CMIP5的3个全球气候模式(CCSM4、HadGEM2-ES和MPI-ESM-MR)的高分辨率动力降尺度结果,使用的区域模式是WRF,覆盖中亚五国,空间分辨率是9km,未来时段是2031-2050(包含1.5-2℃升温阈值对应的10年区间),历史参考时段是1986-2005,碳排放情景是RCP4.5,包含的变量是2米气温和降水(对流和非对流降水),时间分辨率是年。该数据可以用于中亚气候预估。
邱源
本数据集包括中亚大湖区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的内陆水域数据,包括河流,运河和湖泊的分布。各个国家的线状和面状要素分别存储在不同文件中。该数据集来自世界数字地图(DCW),其主要来源是美国,澳大利亚,加拿大和英国制作的美国国防测绘局(DMA)的操作导航图(ONC)1:1,000,000比例纸质地图系列。DCW数据库最后更新至1992年,并于2006年开始免费提供。
徐晓凡, 谈明洪
面向中亚五国农业可持续发展,以耕地为目标,从土地资源开发利用风险角度开展了土地资源脆弱性评价。以耕地为目标的土地资源开发利用风险评价因子包括:地形因子(高程、坡度)、土地利用类型、土壤质地等,农业可持续发展评价因子包括:人均GDP、人均谷物产量、农业经济增长率、城市化水平、人口自然增长率、土壤有机质含量等。将上述指标中直接代表土地资源属性的土地利用类型、土壤质地、土壤有机质含量等作为土地资源脆弱性评价指标,基于指标加权平均获取了土地资源脆弱性,并将土地资源脆弱性评价作为土地资源开发利用风险评价的一部分,进行土地资源开发利用风险评估时采用多元线性回归方法确定土地资源脆弱性评价指标的权重。数据提供了1995s (1992-1996), 2000s (1997-2001), 2005s (2002-2006), 2010s (2007-2011), 2015s (2012-2017)和1995-2015六个时间段的中亚五国土地资源脆弱性,空间分辨率为0.5°×0.5°。数据集可为中亚五国土地资源开发利用和农业发展等提供基础数据支撑。
李兰海, 黄法融
1)沙尘、硫酸盐、有机碳、黑碳和海盐气溶胶以及总气溶胶的光学厚度、垂直质量浓度和消光系数; 2)数据来源:数值模拟,加工方法:基于CALIPSO卫星垂直观测和全球气溶胶模式,通过四维局地集合转换卡尔曼滤波同化方法产生; 3)数据质量良好; 4)该气溶胶同化数据时空覆盖完整,可用于泛第三极地区气溶胶及其化学组分的时空分布特征及其演变规律研究,还可用于气溶胶-云互馈对降水和水汽输送及其辐射、气候以及环境效应研究。
戴铁, 程越茗
CMIP5(Coupled Model Intercomparison Project Phase 5)是气候耦合模型相互比较项目的第五阶段实验,提供了一个多气候模式环境,可用于预估“一带一路”关键节点区域未来气候变化,以应对关键节点区域的环境气候问题。本数据集以“一带一路”关键节点区域为研究区,对CMIP5的43个气候模式对研究区未来气候变化的预估能力进行评估,以模拟结果的均方根误差为标准,分别选取RCP4.5及RCP8.5情景下模拟能力最优的气候模式,对研究区进行气候模拟,得到研究区2006至2065年降雨量、气温的未来预估数据,并使用统计降尺度方法使数据集空间分辨率达到10km,时间分辨率为每月。每一期数据具有三个波段,分别是气温最大值、气温最小值和降雨量。本数据集中,降雨量单位为kg/(m^2*s),气温单位为K。本数据集为应对关键节点区域的环境气候问题提供数据基础。
李炘妍, 凌峰
青藏高原蒸散发是利用遥感、气象、以及野外通量观测站等数据,采用多尺度-多源数据协同的陆表蒸散遥感模型-ETWatch进行计算的。ETWatch采用了余项法与P-M公式相结合的方法计算蒸散。首先根据数据影像的特点选择适用的模型反演晴好日蒸散;遥感模型常常因为天气状况无法获取清晰的图像而造成数据缺失,为获得逐日连续的蒸散量的,引入Penman-Monteith公式,将晴好日的蒸散结果作为“关键帧”,将关键帧的地表阻抗信息为基础,构建地表阻抗时间拓展模型,填补因无影像造成的数据缺失,利用逐日的气象数据,重建蒸散量的时间序列数据,并通过数据融合模型,将中低分辨率的蒸散时间变化信息与高分辨率的蒸散空间差异信息的相结合,构建高时空分辨率蒸散数据集,从而生成青藏高原8km分辨率蒸散数据集(1990-2015)。
王晓峰
1)数据内容:泛第三极地区基于遥感反演的主要生态环境数据,包含PM2.5浓度、森林覆盖率、EVI、土地覆被、CO2等指标;2)数据来源及加工方法:PM2.5数据来源于the Atmospheric Composition Analysis Group Web site at Dalhousie University、森林覆盖度数据来源于MODIS Vegetation Continuous Fields (VCF),CO2数据来源于ODIAC Fossil fuel emission dataset,EVI数据来源于MODIS Vegetation Index Products,土地覆被数据来源ESA CCI Land cover。提取出泛第三极65个国家和地区,其他未进行加工;3)数据质量描述:数据2000-2015年数据时间序列较好;4)数据应用成果及前景:可用于生态环境变化分析。
李广东
本数据集包含青藏高原地区近50年(1950-2002)的自然灾害统计信息,包括干旱、雪灾、霜灾、冰雹、洪涝、风灾、雷电灾害、寒潮和强降温、低温冻害、大风沙尘暴、虫灾、鼠害等气象灾害产生的时间地点及所造成的损失及影响。 青海和西藏是青藏高原的主体,青藏高原是我国生物物种形成、演化的中心之一,也是国际科技界瞩目的研究气候和生态环境变化的敏感区和脆弱带,其复杂的地形条件,高峻的海拔高度和严酷的气候条件决定了生态环境十分脆弱,,成为我国自然灾害发生最频繁的地区。 数据摘录自《中国气象灾害大典·青海卷》、《中国气象灾害大典·西藏卷》,人工录入总结校对。
统计局
该数据集是基于一系列微波遥感数据获取,包含Special Sensor Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E)等,表征植被的含水量,可作为初级生产力的参考。数据来源于Liu et al. (2015),具体计算方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域。该数据集常被用作评定植被绿度和初级生产力的时间和空间格局,具有实际意义和理论价值。
刘毅
广义的季节冻土包括非多年冻土区的季节冻结层和多年冻土区的季节融化层。季节冻土的面积可达80%以上,占据北半球大部分陆地面积。季节冻土的冻融循环过程对地-气水热交换、地表能量平衡、地表水文过程、生态系统、碳循环、农业生产、工程建设等具有非常重要的影响。基于站点观测资料、CRU资料,利用Stefan方程,计算祁连山多年冻土区活动层厚度和季节冻土区土壤冻结深度的空间分布(1971-2000年的30年平均值)。研究结果有助于进一步探讨祁连山季节冻土变化与气候变化之间的物理机制、冻土区生态-水文过程等研究。
彭小清, 张廷军
本数据集是一个包含34年(1983.7-2017.6)的全国高分辨率地表太阳辐射数据集,其分辨率为10公里,数据单位为W/㎡。该数据集是基于以ISCCP-HXG云产品为主要输入的全球高分辨率(3小时,10公里)地表太阳辐射数据集(1983-2017)上,通过地理加权回归方式,融合全国2261个气象台站日照时数反演的地表太阳辐射站点数据而生成的全国地表太阳辐射分布数据。验证并和其他全球卫星辐射产品比较表明,该数据集在长期趋势模拟上比GEWEX-SRB、CMSAF-CLARA-A2、ISCCP-HXG卫星辐射产品的精度要高。本数据可为陆地表面过程模拟的水文生态学的长期变化应用和研究中提供有利的数据支持。
冯飞, 王开存
古湖沼学和古生态学方法为气候环境变化与生态系统过程变化研究提供了一个长期的视角,它们记录了气候变化与人类活动对水生生态系统的直接影响和间接影响过程。湖泊沉积物中的浮游动物壳体和沉积色素,可以反映湖泊生态系统中初级生产者(光合生物)和初级消费者的群落结构的变化。作者利用青藏高原中部湖泊达则错的沉积物中的卤虫的头壳和西藏蚤的卵,以及沉积色素重建了过去600年来的浮游动物和浮游植物群落变化。利用总氮和总磷重建了湖泊过去营养盐的变化。结果显示,浮游植物群落变化主要受控于浮游动物群落,这一结果可为未来高原湖泊生态系统的管理提供重要的理论参考。
梁洁
该数据提供了南极冰盖2013年-2019年间的年度冰流速产品,该产品是第一个采用Landsat 8 光学影像的全色波段(15米分辨率)获取的南极冰川流速年度产品。所使用的影像时间段为2013年12月-2019年4月。该南极年度冰流产品共采用了超过8万景Landsat 8影像,超过25万景形变测量结果。洲际冰流速产品采用了非局部均值滤波误差处理方法,裸岩区域作为标定的处理方法,提高了冰流的细节和定位精度。是至今为止南极覆盖最全、分辨率最高的年度产品。该产品可以作为评估南极冰盖物质平衡的重要基础资料,也可以作为冰川模型的标定产品。
沈强
对未来气候变化的有效评价,特别是对未来降水量的预测,是制定适应战略的重要依据。本数据是基于RegCM4.6模型,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP2.6、RCP4.5、RCP6.0和RCP8.5)、HadGEM2-ES(RCP2.6、RCP4.5和RCP8.5)、IPSL-CM5A-LR(RCP2.6、RCP4.5、RCP6.0和RCP8.5)、MIROC5(RCP2.6、RCP4.5、RCP6.0和RCP8.5)和NorESM1-M(RCP2.6、RCP4.5、RCP6.0和RCP8.5)等多模型不同碳排放浓度情景下进行区域动力降尺度,获得2007-2099年空间分辨率为0.25度,时间分辨率分别为3小时(部分为6小时)、逐日和逐年的21套中国全境未来气候数据。
潘小多, 张磊
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月南极冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE-FO (2018年六月至今)。由于GRACE和GRACE-FO之间有一年左右数据间断,我们额外采用了由欧洲空间局ESA的Swarm星座GPS数据反演得到的重力场数据(2013年12月至2019年12月)。所采用GRACE重力场数据为德州大学奥斯丁空间研究中心(CSR)、德国地学研究中心(GFZ)、美国宇航局喷气推进实验室(JPL)以及俄亥俄州立大学(OSU)四家机构发布产品的加权平均模型。GRACE数据后处理包括:用SLR数据解算结果替换GRACE低阶重力场参数(degree-1, C20和C30),去条带滤波,300公里高斯平滑,ICE6-G_D(VM5a)GIA模型,信号泄露误差改正,椭球误差改正等。
张宇, 沈嗣钧
亚洲高山区是地球上除南极和北极地区之外的第三大冰冻圈,分布着大量冰川积雪,不仅对全球水循环而且对亚洲中部干旱区的水资源及生态环境均有举足轻重的影响。在冰川学中,雪线作为消融期末积雪存在的下限,其高度变化信息是冰雪水资源变化的直观反映,也常用于指示冰川物质平衡,直接反映着冰川的进退。本数据集以2001—2019年逐日MODIS积雪产品为主要数据源,首先对逐日的MODIS积雪覆盖率产品进行去云处理,获得积雪覆盖日数(SCD)数据集;并用冰川年物质平衡观测数据、融雪末期Landsat数据对提取终年积雪的MODIS SCD阈值进行率定;然后以MODIS SCD提取的终年积雪面积结合地形“面积—高程”曲线实现大尺度融雪末期雪线高度信息的提取,最后得到2001-2019年亚洲高山区30km格网雪线高度数据集。本数据集可为亚洲高山区冰冻圈及气候变化等相关研究提供数据支持。
唐志光, 邓刚, 王晓茹
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
本数据集是祁连山区多年冻土地下冰分布数据。本数据借助已有的钻孔资料,结合第四纪祁连山区沉积类型分布资料与土地利用数据,对多年冻土上限至地下 10 m 深度范围内的的地下冰分布进行估算。本数据集采用了祁连山区共计374个钻孔资料,并考虑了第四纪沉积类型对地下冰储量的标示作用,具有一定的可靠性。本数据对于祁连山区多年冻土、水资源等方面的研究有一定的科学价值。此外,对于整个青藏高原地下冰储量估算具有一定的推广价值。
盛煜
该数据集包含了黑河流域地表过程综合观测网中游大满站的大孔径闪烁仪通量观测数据。中游大满站分别架设了BLS900和RR-RSS460型号的大孔径闪烁仪,北塔为BLS900的接收端和RR-RSS460的发射端,南塔为BLS900的发射端和RR-RSS460的接收端。观测时间为2019年1月1日至2019年12月31日。站点位于甘肃省张掖市大满灌区内,下垫面是玉米、果园和大棚,以玉米为主。北塔的经纬度是100.3785E,38.8607N,南塔的经纬度是100.3685E,38.8468N,海拔高度约1556m。大孔径闪烁仪的有效高度24.1m,光径长度是1854m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS900:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS900:Average X Intensity<1000;RR-RSS460:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS900,选取Thiermann and Grassl(1992)的稳定度普适函数;对于RR-RSS460,选取Andreas(1988)的稳定度普适函数,详细介绍请参考Liu et al. (2011, 2013)。由于仪器维修、供电不足和信号问题,大孔径闪烁仪数据缺失的日期为:2019.01.22-2019.01.24;2019.03.01-2019.04.26;2019.08.05-2019.08.07;2019.10.28-2019.10.31;2019.11.29-2019.12.21。 关于发布数据的几点说明:(1)中游LAS数据以BLS900为主,缺失时刻由RR-RSS460观测补充,两者都缺失则以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H:感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年1月1日至2019年12月31日的黑河流域地表过程综合观测网中游大满超级站涡动相关仪观测数据。站点位于甘肃省张掖市大满灌区内,下垫面是玉米。观测点的经纬度是100.37223E, 38.85551N,海拔1556.06m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(比插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
基于青藏高原土壤温湿度观测网玛曲站点建立的地基L波段微波辐射计观测系统(ELBARA-III,由欧洲航空局提供),本数据集囊括了水平和垂直极化的L波段亮温数据,地表及以下不同层土壤湿度和温度数据,地表通量(如感热、潜热、碳通量),气象要素数据(如降水、上下行长波/短波辐射、空气温度和湿度、气压)以及植被叶面积指数LAI和土壤性质等辅助数据。此多年尺度的数据集可用于提高对陆面过程、微波辐射过程的理解,验证SMOS和SMAP卫星亮温观测和土壤湿度反演结果,校验微波辐射传输模型中的假设条件,验证陆面模式输出以及再分析资料,反演土壤物理性质,量化陆-气间的水、碳、能量交换,并将帮助定量化地球系统模型中参数化方案的偏差和不确定性,从而提出相应改进方案。 ELBARA-III双极化亮温数据可通过测量的辐射计电压和校准的内部噪声温度计算得到。该数据质量可靠,其质量控制主要通过:1)对辐射计输出的原始电压数据(以800Hz采样频率)进行直方图检验,利用统计指标过滤射频干扰对ELBARA-III微波信号数据的影响;2)检查辐射计进行天空辐射测量时两天线端口的电压值是否相似,天线电缆有无损耗;3)分析仪器内部温度、主动冷源温度和环境温度;4)分析不同入射角度的双极化亮温的特点。 - 时间分辨率:30分钟 - 空间分辨率:入射角为40°~ 70°,间隔为5°,观测覆盖范围为3.31 m^2~ 43.64 m^2 - 测量精度:亮温,1 K;土壤水分,0.001 m^3 m^-3;土壤温度,0.1 °C - 单位:亮温,K;土壤水分,m^3 m^-3;土壤温度,°C /K
Bob Su, 文军
中亚农业水资源脆弱性数据集基于气象、土地覆盖、地形和社会经济数据, 依据脆弱性概念框架, 从暴露度、敏感度和适应度 3 个方面选取 18 个指标, 建立了农业水资源脆弱性评价指标体系, 采用等权重法和主成分分析法确定指标权重, 对中亚农业水资源脆弱性进行了评价及特征分析。对部分原始各个栅格数据进行比较,从原始目标栅格最左上角开始,依次向相邻的右、下栅格延伸,四个栅格(即0.5°)取中位数合并为一个栅格,并且该中位数作为四个栅格中心点对应的地理坐标的数值,消除栅格间的极端数值情况。数据提供了1992-1996、1997-2001、2002-2006、2007-2011、2012-2017和1992-2017六个时间段,空间分辨率为0.5°乘以0.5°。数据集可为中亚五国农业水资源供需和开发利用分析等提供基础数据支撑。
李兰海, 于水
本数据集包含2001-2018年青藏高原月平均地表实际蒸散发量,空间分辨率为0.1度。数据集主要以卫星遥感数据(MODIS)和再分析气象数据(CMFD)作为输入,利用地表能量平衡系统模型(SEBS)计算得到。在计算湍流通量的过程中引入了次网格地形拖曳参数化方案,提高了对地表感热通量和潜热通量的模拟。另外,利用青藏高原6个湍流通量站的观测数据对模型输出的蒸散发量进行了验证,显示出了较高的精度。该数据集可用于研究青藏高原陆气相互作用和水循环特征。
韩存博, 马耀明, 王宾宾, 仲雷, 马伟强, 陈学龙, 苏中波
数据内容:国内生产总值(GDP) 年度统计(1990-2019)、国内生产总值(GDP) 季度累计统计(1990-2019)及地区生产总值(2010-2019) 数据来源及加工方法:从世界银行官方网站、新浪网获取2015-2019年中国地区(包括第三极)宏观经济原始数据,通过数据整理、筛选及清洗得到1990-2019年中国地区(包括第三极)宏观经济数据集,数据以Microsoft Excel (xlsx)格式存储。
傅文学
数据内容:央行黄金和外汇储备(2000-2020) 及货币供应量(2000-2017) 数据来源及加工方法:从世界银行官方网站、新浪网获取2015-2019年中国地区(包括第三极)银行和货币原始数据,通过数据整理、筛选及清洗得到2000-2020年中国地区(包括第三极)银行和货币数据集,数据起始时间为2000年至2020年,Microsoft Excel (xlsx)格式。
傅文学
数据内容:对外经济贸易_货物进出口总额(1952-2019) 及对外经济贸易_按贸易分进出口总额(1981-2019) 数据来源及加工方法:从世界银行官方网站、新浪网获取2015-2019年中国地区(包括第三极)对外贸易及投资原始数据,通过数据整理、筛选及清洗得到1952-2019年中国地区(包括第三极)对外贸易及投资数据集,数据起始时间为1952年至2019年,Microsoft Excel (xlsx)格式。
傅文学
数据内容:国民经济_工业增加值(月度)(2010-2019) 数据来源及加工方法:从世界银行官方网站、新浪网获取2015-2019年中国地区(包括第三极)工业经济原始数据,通过数据整理、筛选及清洗得到2010-2019年中国地区(包括第三极)工业经济数据集,数据起始时间为2010年至2019年,Microsoft Excel (xlsx)格式。
傅文学
数据内容:价格指数_居民消费价格指数(CPI)(2010-2019) 数据来源及加工方法:从世界银行官方网站、新浪网获取015-2019年第三极(中国地区)价格指数经济原始数据,通过数据整理、筛选及清洗得到2010-2019年第三极(中国地区)价格指数经济数据集,数据起始时间为2010年至2019年,Microsoft Excel (xlsx)格式。
傅文学
黄河源多年冻土分布数据是基于黄河源区多年冻土年均地温模型而建立的,以年平均地温0℃作为划分季节冻土和多年冻土的标准和界限。与目前可利用的黄河源区冻土分布图有青藏高原冻土图(1:300万)和青藏高原多年冻土本底调查项目完成的青藏高原冻土分布图(1:100万)相比,该数据集基于黄河源区实测数据,与实测数据有更高的吻合性,冻土分布图的模拟精度也最高。该数据集可用于黄河源区多年冻土分布研究的验证,也可用于冻土环境等方面的研究。
盛煜, 李静
This dataset includes daily water vapor and precipitation isotopes (δ18O and δD) and daily meteorological parameters including temperature, relative humidity, vapor concentration, air pressure, and precipitation amount at Nanjing, eastern China. Water vapor isotopes (δ18Ov and δDv) were online measured during November 2012 to December 2018 by a Wavelength Scanned Cavity Ring-Down Spectrometer (WS-CRDS, model: Picarro L2120-i) at the Station for Observing Regional Processes of the Earth System of Nanjing University (SORPES-NJU, 32.12°N, 118.95°E, 55 m above sea level) on the Xianlin Campus of the Nanjing University, about 20 km east of downtown Nanjing in the Eastern China. The uncertainties were determined to be less than 0.2‰ for δ18Ov and 1.0‰ for δDv. Precipitation isotopes were also measured by Picarro L2120-i during September 2011 to December 2018, with the analytical uncertainty of less than 0.1‰ for δ18O and 0.5‰ for δD.
庞洪喜
高质量高时空分辨率降水产品在理解全球和区域尺度的“水-碳-能”循环研究中扮演重要角色。卫星遥感为监测降水高时空变异特征提供了不可替代的手段,尤其是在自然条件恶劣的无资料地区。但由于是间接估算而来,卫星遥感降水产品不可避免地存在系统偏差和随机误差。聚焦于目前主流的遥感降水产品(GPM IMERG及其回推产品,0.1°/half-hourly,2000-present)获取过程中的潜在不足,如该产品的矫正时空尺度为1.0°/monthly,本研究在更高时空尺度上提出一套新的时空矫正算法,并引入高质量地面观测产品APHRODITE(0.25°/daily),生产了一套亚洲地区同期高质量高时空分辨率降水数据集AIMERG(0.1◦/half-hourly,2000–2015)。AIMERG降水数据集能够同时有效考虑卫星估计和地面观测的各自优势,其系统偏差和随机误差在中国地区不同时空尺度上的表现优于GPM IMERG,为亚洲地区相关领域的科学研究及生产实践提供了更为丰富且可靠的基础数据。
马自强
包含青藏高原地区气溶胶类型和气溶胶光学厚度,两类数据。 气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终气溶胶类型数据(共12种)和质量控制结果。充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。 气溶胶光学厚度(AOD)采用自主研发的可见光波段遥感反演方法,结合Merra-2模式数据与NASA的官方产品MOD04制作,数据覆盖时间从2000年到2019年,时间分辨率为逐日,空间分辨率为0.1度。反演方法主要采用自主研发的APRS算法,反演了冰雪上空的气溶胶光学厚度,算法考虑了冰雪地表的BRDF特性,适用于冰雪上空气溶胶光学厚度的反演。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁, 赵传峰
泛第三极主要城市2000-2017年土地覆盖数据包含2000/2010/2017年14个城市(乌鲁木齐、西宁、兰州、达卡、加德满都、勒克瑙、德里、拉合尔、伊斯兰堡、喀布尔、杜尚别、塔什干、比什凯克、阿拉木图)30米分辨率的数据。包括植被、耕地、人造地表、水体和其它五种地类。利用GlobeLand30, MCD12Q1,Globcover2009识别了分类一致区域并保留,采用深度学习方法对分类不一致区域重新分类,融合两类区域得到最终的分类结果。 每年数据均经过人工目视解译验证。 数据应用于泛第三极城市建设用地变化、人类活动影响的研究。 数据类型:栅格。 投影方式:UTM投影。
栾文飞, 李新
青藏高原五大河源区冰川径流数据集覆盖时间从1971年到2015年, 时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源)。 数据以多源遥感和实测数据为基础,使用青藏高原五大河源区及其周边气象站点日尺度气象数据、UMD-1KM的全球植被产品、IGBP-DIS土壤数据库、第一、二次冰川编目数据等驱动模型,耦合了冰川模块的分布式水文模型VIC-CAS模拟形成了冰川径流数据。并使用站点实测数据对模拟结果进行了验证, 增强质量控制。 数据指标包含:冰川径流率(Rate of glacier runoff: %),总径流(Total Runoff,mm/a),雪径流率(Rate of snow runoff: %),降雨径流率 (降雨径流率:%)。
王世金
这组数据是1974-2016年期间珠峰北坡绒布流域三条绒布冰川及表碛覆盖冰川三个时间段的年均冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由三个阶段的DEM高程差数据DHPRISM2006-DEM1974(DH2006-1974)、DHSRTM2000-DEM1974(DH2000-1974)、DHASTER2016-SRTM2000(DH2016-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHPRISM2006-DEM1974, or DH2006-1974, 是2006年PRISM2006 数据和1974年DEM1974之间的高程差,即DH2006-1974 =PRISM2006 – DEM1974。PRISM2006是由2006年12月4日的光学立体像对遥感数据ALOS/PRISM生成。DEM1974是由我国早期1:50,000地形图生成的,这两期DEM都采用横轴墨卡托投影、Krasovsky1940椭球体。PRISM2006与DEM1974配准后,非冰川区高程数据精度为±0.24 m a-1。DHSRTM2000-DEM1974(DH2000-1974)是,2000年SRTM与DEM1974的高程差,两期DEM数据配准后,非冰川区高程数据精度为±0.03 m a-1。DHASTER2016-SRTM2000(DH2016-2000)是基于Brun et al. (2017) 发布的冰面高程差数据,采用与DH2006-1974、DH2000-1974一样的数据处理方法与处理过程而得到, 在非冰川区高程数据精度为±0.08 m a-1。表格中包括的数据项有:Shape_Area,冰川面积(m2)、Name冰川名,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_16表示2000-2016年间冰川每年的冰面高程变化(m a-1),EC74_2006是1974-2006年间冰川年均冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_16表示2000-2016年每条冰川年均冰川物质平衡数据(m w.e. a-1),MB74_2006表示1974-2006年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2016表示2000-2016年间每条冰川每年的冰储量变化(m3w.e. a-1),MC74_2006表示1974-2006年间每条冰川每年的冰储量变化(m3w.e. a-1), Uncerty_EC,是每条冰川冰面高程变化的最大误差范围(m a-1)、Uncerty_MB,是每条冰川冰川物质平衡的最大误差(m w.e. a-1),Uncerty_MC, 是每条冰川冰储量变化的最大误差(m3w.e. a-1)。 MinUnty_EC,是每条冰川冰面高程变化的最小误差范围,MinUnty_MB,每条冰川冰川物质平衡的最小误差(m w.e. a-1),MinUnty_MC是每条冰川冰储量变化的最小误差(m3w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
该数据提供了青藏高原内陆流域582个面积大于1平方公里的湖泊从1986-2019的年湖泊面积。 首先根据JRC和SRTM DEM数据,识别研究区内582个大于1 km2的湖泊。利用Landsat5/7/8所有覆盖湖泊的遥感影像合成每年的Landsat影像,根据NDWI指数和Ostu算法动态分割每个湖泊,并据此计算每个湖泊1986-2019年湖泊面积大小。 本研究基于Landsat卫星遥感影像,利用Google Earth Engine 处理了所有Landsat影像,建立了至今为止最全的青藏高原地区大于1平方公里的年湖泊面积数据集;开发了一套湖泊面积自动提取算法,实现单个湖泊多年面积的批量计算;该数据对分析青藏高原地区湖泊面积动态、水量平衡,及研究青藏高原湖气候变化有重要意义。
朱立平, 彭萍
2002-2018年北半球高纬地区中分辨率MODIS河湖冰覆盖度数据集是基于MODIS的归一化积雪指数数据,利用SNOWMAP算法对晴空条件下的逐日河湖冰覆盖范围进行检测,并通过对河湖面的时间、空间的连续性等一系列步骤重新确定云覆盖条件下的河湖冰覆盖范围。通过这一系列的处理后,获得少云的逐日河湖冰覆盖度数据集。该数据集中获得的湖冰物候信息与被动微波数据的信息高度一致,平均相关系数为0.91,RMSE值在0.07至0.13之间变化。
邱玉宝
This is a dataset of treeline shift rates including 143 alpine treeline sites in the Northern Hemisphere. It gives the following information for each treeline site: treeline form, study site, latitude, longitude, reference, tree species, elevation, study period and annual mean elevational shift rate (m/yr).
LU Xiaoming, Eryuan Liang
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要指标。但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行监测,可填补观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集。数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
田帮森, 邱玉宝
利用2004年2月至2008年10月ICESat R633卫星测高数据使用重复轨道平面拟合方法,获取南极Lambert Glacier/Amery Ice Shelf system区域的高程变化,使用IJ05 R2模型进行GIA 改正、投影面积变形改正,进而得到 30km*30km 分辨率的表面高程变化率,通过粒雪密度模型将结果转换为物质变化,和重力卫星 GRACE 重力卫星时变模型所得南极物质变化进行比较。
谢欢, 李荣兴
近年来,随着南极冰盖消融的加速,在冰盖表面形成了大量冰面融水。深入理解南极冰盖冰面融水的时空间分布,掌握冰面融水动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集是基于Landsat影像提取的2000-2019年南极冰盖典型消融区(南极半岛亚历山大岛)30m冰面融水数据集。本数据集投影为极地方位投影,数据集格式为矢量(shp)和栅格(tif),时间集中在每年的12月至次年2月(南半球夏季)。
杨康
这组数据是1974-2013年期间喜马拉雅山脉西段纳木那尼峰地区年均冰川物质平衡变化和冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由两个阶段的DEM高程差数据DHSRTM2000-DEM1974(即DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHSRTM2000-DEM1974(DH2000-1974), 是2000年SRTM DEM2000数据和1974年1:50,000的DEM1974之间的高程差,即DH2000-1974 =SRTM2000 – DEM1974。DEM1974是由我国1974年航拍照片绘制1:50,000地形图生成的,两期DEM数据配准后,非冰川区高程数据精度为±0.13 m a-1。DHTanDEM2013-SRTM2000(DH2013-2000),是基于2013年10月17日一对TerraSAR-X和TanDEM-X (TSX/TDX)雷达数据与2000年SRTM DEM数据、采用差分干涉技术(D-InSAR)获取,在非冰川区高程数据精度为±0.04 m a-1。 表格中包括的数据项有: Area,冰川面积(m2)、GLIMS_Id表示冰川编号,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_13表示2000-2013年间冰川每年的冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_13表示2000-2013年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2013表示2000-2013年间每条冰川每年的冰储量变化(m3 w.e. a-1), Uncerty_MB是每条冰川年均冰川物质平衡数据误差(m w.e. a-1), Uncerty_MC表示每条冰川每年的冰储量变化的最大误差范围(m3 w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
环北极不同类型多年冻土区NDVI变化数据集(1982-2015),时间分辨率为每5年一期,覆盖范围为整个环北极国家, 空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础, 使用GIS方法和生态学方法结合, 量化了北半球多年冻土对生态系统的调节服务功能, 其所有数据进行了质量控制。利用环北极不同类型多年冻土区划,借助1982-2015年期间NDVI值,使用GIS方法,计算了1982-2015年期间环北极不同类型多年冻土区的NDVI变化,形成了“1982-2015环北极不同类型多年冻土区NDVI变化数据集”。同时,综合多个文献,对其数据进行了质量控制。
王世金
同济大学沈云中教授卫星重力团队利用GRACE Level-1B卫星重力数据解算了2002年至2016年的格陵兰区域质量变化时间序列,空间分辨率为1度×1度,时间分辨率为1个月。该时间序列的参考时间为2004年1月与2009年12月之间的中间时刻。 在数据处理过程中,采用ICE5G模型扣除冰后回弹GIA影响,同时利用德国地学研究中心最新发布的AOD1B RL06去混频模型,回加了GAD质量变化贡献。
沈云中
该数据集包含了2019年6月1日至2019年9月20日的黑河水文气象观测网下游混合林站叶面积指数观测数据。站点位于内蒙古额济纳旗四道桥,海拔870 m,下垫面是胡杨与柽柳混合。观测在混合林站(101.1335E, 41.9903N)旁开展,样方大小约30m×30m,每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 屈永华, 徐自为, 李新
在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。 2019年中国高寒地区地表过程与环境观测网络水文数据集,主要收集:藏东南站、珠峰站、玉龙雪山站、纳木错站、阿里站、天山站等六个站 点实测水文(径流、水位、水温等)数据。 藏东南站:流量数据,包含2019年4次利用M9测流数,有平均流速、流量和最大水深等数据;相对水位数据采用hobo压力式水位仪测量,包含2019年全年日均相对水位和水温数据。 纳木错站:流量数据,包括2019年4次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据,水位数据采用hobo压力式水位仪测量,包含2019年原始1小时的水压、水温和电量,通过水压可以计算相对水位; 珠峰站:绒布河流量,包括2019年6-9月13次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据; 阿里站:流量数据:包括2019年利用河锚M9不定期测量的22次数据,相对水位数据采用hobo压力式水位仪测量,包含2019年全年每小时水位和水温数据; 天山站:水位数据:包括3个点2019年的日平均水位 玉龙雪山站: 包括木家桥2019年1-10月流量数据
朱立平, 彭萍
1990-2015年中亚大湖区土地覆被数据集,数据范围包括5个国家:哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、乌兹别克斯坦和土库曼斯坦。数据来源于欧空局,精度为300m。全球土地覆盖数据库使用的坐标参考系统是基于世界大地测量系统84 (WGS84)参考椭球面的地理坐标系统(GCS)。 数据共分为22个类别,在每个类别中还有亚类。分类类型使用联合国粮食及农业组织(FAO)开发的土地覆盖分类系统(LCCS)定义,其目的是尽可能与GLC2000、GlobCover 2005和2009产品兼容。
杨宇
山区受到复杂地形影响,其活动层厚度表现出极强的空间异质性。本数据集利用探地雷达方法和其他传统方法系统勘察了黑河上游活动层厚度。数据采集覆盖了不同海拔、地表类型、土壤质地和地形信息,因此具有较强的代表性。根据与其他直接测量活动层厚度方法对比后得到探地雷达测量的活动层厚度数据误差约为8cm,具有非常高的可信度。该数据集可为了解该区域活动层厚度提供详实的野外数据,验证陆面模型,尤其是冻土研究,提供验证数据集。
曹斌
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件