冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
杨威
本数据为末次冰盛期以来亚洲高山区冰川分布的模拟数据,其中包括典型区域(亚洲高山区、天山、喜马拉雅山、帕米尔高原)年分辨率的冰川面积变化序列以及典型时期(LGM(20000~19000ka),HS1(17000~16000ka),BA(~14900~14350ka),YD(12900~12000ka),EH(9500~8500ka),MH(6500~5500ka),LH(3500~2500ka)和Modern(1951~1990))1km分辨率的亚洲高山区冰川分布。该数据以基于CCSM3气候模式的TRACE全强迫模拟试验数据为外强迫场,驱动1km分辨率的PISM冰盖模式,从而获取末次盛冰期以来亚洲高山区冰川的可能分布。该数据可以用于研究末次冰盛期以来亚洲高山区冰川分布的变化及其对湖泊水位、径流、地貌等环境和气候要素的影响。
燕青
本数据集是一个包含接近35年(1984-2018)的全球高分辨率光合有效辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于生态过程模拟和全球碳循环的理解。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据、MERRA-2气溶胶数据以及MODIS反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来生态过程模拟的研究和全球二氧化碳通量的估算。
唐文君
本数据为基于WRF模式4.1.2版本和WRFDA同化系统4.1.2版本建立的中亚区域再分析资料,变量包含气温、气压、风速、降水、辐射。再分析的建立使用了循环同化的方式,每6小时使用3DVAR同化一次,同化的资料包括常规大气观测和卫星辐射资料。其中常规资料主要来源为GTS,来源包括人工站、自动站、探空和飞机报,观测要素包括气温、气压、风速和湿度。卫星观测包括反演数据和辐射数据,反演数据主要为极轨气象卫星(NOAA-18、NOAA-19、METOP-A和METOP-B)反演的云导风,并重采样到54km水平分辨率;辐射数据包含了MSU、AMSU和MHS等微波辐射和HIRS红外辐射数据。模拟采用双层嵌套的方式,水平分辨率分别为27公里和9公里,垂直方向共38层,模式层顶为10hPa。模式的侧边界条件由ERA-Interim再分析逐6小时的分析场提供,模式使用的物理方案为Thompson微物理方案,CAM辐射方案,MYJ边界层方案、Grell对流方案和Noah陆面模式。本资料覆盖区域包括中亚地区的哈萨克斯坦、塔吉克斯坦、吉尔吉斯斯坦、土库曼斯坦和乌兹别克斯坦五个国家以及里海、咸海、巴尔喀什湖、伊萨克湖等中亚地区的湖泊,可用于该区域的气候、生态、水文等方面的研究。以中亚地区台站观测的降水为参照,本数据的模拟效果和融合降水产品MSWEP相似,优于ERA5和ERA-Interim。
姚遥
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)水下20cm左右,绝对压力和水体温度。该自动水位计的数据采用USB离线获取的方式收集,初始记录时间为2021年6月19日20时00分,记录间隔为10分钟,2021年9月18日11:00现场下载数据。数据完整。
张东启
本数据集包含了青藏高原及周边地区(南亚:尼泊尔、不丹、印度、巴基斯坦、孟加拉、斯里兰卡、马尔代夫;中亚:土克曼斯坦、吉尔吉斯斯坦、乌兹别克斯坦、塔吉克斯坦、哈萨克斯坦、阿富汗斯坦;西亚:伊朗、伊拉克、阿塞拜疆、格鲁吉亚、亚美尼亚、土耳其、叙利亚、约旦、以色列、巴勒斯坦、沙特、巴林、卡塔尔、也门、阿曼、阿拉伯联合酋长国、科威特、黎巴嫩、塞浦路斯)的2017年二氧化硫、氮氧化物、PM2.5排放网格化清单。排放清单来源于IIASA网络公开的数据集,通过使用ArcGIS软件技术将排放清单处理为50km*50km的网格数据集,其质量可以保证。该数据可用于模型工作者对于第三极区域气候及空气质量的进一步研究。
吴清茹
本数据集包含了中国第三极地区(西藏、新疆、云南、青海)的2019年二氧化硫、氮氧化物、PM2.5排放网格化清单。排放清单来源于清华大学王书肖教授课题组排放清单数据库,通过使用ArcGIS软件技术将排放清单处理为1km*1km的网格数据集。排放计算的基础数据基于公开数据搜集、卫星观测数据、文献搜集等方式,以排放因子法进行计算,数据来自于国家统计局数据及其它行业统计年鉴。该数据可用于模型工作者对于第三极区域气候及空气质量的进一步研究。
吴清茹
在共享社会经济路径(SSP)5-8.5情景下4个CMIP6模式2015-2100年的模拟结果。选取标准为这四个模式水平分辨率均小于1°,且均有日数据。从原始模拟结果中提取了8个代表极端气候的变量,分别是日最高气温的极高值(TXx)、日最低气温的极高值(TNx)、日最高气温的极低值(TXn)、日最低气温的极低值(TNn)、连续干旱日数(CDD)、连续湿润日数(CWD)、降水强度(SDII)和强降水日数(R20mm)。数据时间分辨率为年,空间范围为青藏高原地区,时间范围为2015-2100年。
张冉
基于2019-2020年我国高分一号及二号数据,采用深度学习分类方法,结合人工目视解译修正,生产出青藏工程走廊冻融灾害分布数据。数据地理范围为青藏公路西大滩至安多段沿线40km范围。数据包括热融湖塘分布数据及热融滑坡分布数据。该数据集可为青藏工程走廊冻融灾害的研究工作及工程防灾减灾提供数据基础。 青藏公路西大滩至安多段沿线40km范围冻融灾害空间分布基于国产高分二号影像数据自制。首先,利用深度学习方法从高分二号数据中提取泥流阶地区块;然后,利用arcgis进行人工编辑。在制作过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。
牛富俊, 罗京
该数据集主要内容为青藏公路G109、青藏铁路以及新藏公路G219国道沿线地质灾害、路面病害以及桥涵病害调查数据集,调查时间为2020年8月12日--2020年8月19日,2021年7月26日--2021年8月15日。调查对象为南亚通道及喜马拉雅山区工程。调查的病害类型主要包括冻融诱发的地质灾害(落石、危岩体、泥石流冲沟及碎屑坡)、路面裂缝类病害、松散类病害、坑槽类病害、路基变形类病害以及桥涵病害等等。采用人工调查的方法,观察各类病害破损情况,按要求详细记录路面、桥涵以及地质灾害各种破坏类型的数量(范围)、破坏程度及所在位置。该数据集可为全面了解南亚通道及喜马拉雅山区工程冻融病害情况及相关研究提供依据。
李国玉
1967-2020年湖水表面温度(LSWT, 下社站); 1994-2020年湖冰冰厚和和结冰期(下社站); 1956-2020年流域径流(布哈站); 1956-2020年水位(下社站); 1956-2020年湖泊面积 ( 根据2001-2020年Landsat数据提取的湖泊面积和实测的湖泊水位建立面积-水位关系,从而利用实测水位数据估算无Landsat影像年份的面积); 1958-2019年气温(刚察站); 1958-2019年降水量(刚察站)
张国庆
冰盖表面融化是影响格陵兰冰盖物质平衡的主要原因,同时冰雪的反射率较高,冰盖表面融化会造成辐射能量收支差异,进而影响海-陆-气之间能量交换。高分辨率冰盖表面融化产品的生成,对研究格陵兰冰盖表面融化及其对全球气候变化的响应提供重要信息支撑。本数据集基于微波辐射计与光学反照率产品,对微波辐射计当日、冬季(12-次年2月)平均和1月平均进行波段合成,利用Gram-Schmidt方法将微波辐射计波段合成数据与MODIS GLASS反照率产品融合,使其空间分辨率从25 km提高至0.05˚。然后基于微波辐射计当日与冬季亮温差值的阈值法对降尺度结果提取格陵兰冰盖表面融化,得到1985年、2000年、2015年格陵兰冰盖表面0.05˚ 每日融化产品。该数据集0.05˚ 的空间分辨率高于目前国内外已发布数据集,凸显了辐射计和反照率数据对表面融化的响应,空间细节特征更加清晰,保持了原辐射计产品的动态范围,有效地抑制了辐射计噪声。该数据集的数据类型为整型,其中1代表融化,0代表未融化,255代表冰盖以外掩膜区域,数据集以“*.nc”格式存储。
魏思怡, 刘岩
此数据包含1992年-2020年时间段的中亚,南亚和中南半岛地区的空间分辨率为300m土地覆盖数据,包含10个一级类别,由原数据的二级类别合并而来。数据基于欧空局的1992年-2020年时间段地表覆盖产品 CCI-LC,对耕地、建设用地和水体等地类进行修正。基于清华大学全球土地覆被数据(FROM-GLC,30m栅格)、美国NASA的MODIS全球土地覆被数据(MCD12Q1,500m栅格)、美国地质调查局USGS的全球耕地数据(GFSAD30,30m)、日本全球林地数据的(PALSAR/PALSAR-2,25m)的一致区获取训练样本,应用谷歌地球数字引擎及其随机森林算法,对研究区待修正区域进行机器判别,获得修正的土地覆被产品。应用2019年和2020年的谷歌地球高清影像,对耕地、建设用地和水体变化区域的精度进行分层随机抽样验证,三种地类分别抽取了1200个、共计3600个,相比 CCI-LC数据,本修正产品在该变化区域的精度提升了11%到26%。
许尔琪
该数据集是刘勇勤课题组从2010年以来多次野外采样积累的数据汇总而成,包括青藏高原12个冰川的冰芯和雪坑微生物丰度数据(5409条记录)和38个冰川的溶解性有机碳和总氮数据(2532条记录,包括冰芯、雪坑、表面冰、表面雪和冰前径流等生境)。所采样的冰川覆盖范围广,气候条件多样,多年平均气温从-13.4℃(古里亚冰川)到2.9℃(朱溪沟冰川),多年平均降水量从76.9毫米(15号冰川)到927.8毫米(24K冰川)。这些数据可为研究冰川碳氮循环和全球变暖背景下冰川退缩对下游生态系统的影响提供基础数据。
刘勇勤
1) 青藏高原地面气象驱动数据集(2019-2020),包括地表温度(Land surface temperature)、地表降水率(Mean total precipitation rate)、下行短波辐射(Mean surface downward long-wave radiation flux)以及下行长波辐射(Mean surface downward short-wave radiation flux)4个气象要素。 2) 该数据集以ERA5再分析数据为基础,辅以MODIS NDVI、MODIS DEM、FY3D MWRI DEM数据产品。通过多元线性回归方法对ERA5再分析数据进行降尺度处理,最后通过重采样生成。 3) 青藏高原地面气象驱动数据集(2019-2020)各数据要素均以TIFF格式存储,时间分辨率包括(每日、每月、每年),空间分辨率统一为0.1°×0.1°。 4) 本数据方便不会使用.nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 杜宝隆
本数据集包含了2012-2020年东亚地区高分辨率对流层二氧化氮垂直柱浓度POMINO v2.1数据,是v2.0.1错误修复后的新版本数据,为研究中国地区对流层二氧化氮的空间分布特征和时间变化趋势提供了重要的数据基础。该数据基于KNMI提供的对流层二氧化氮斜柱浓度,通过自行开发的对流层AMF反演算法,计算得到POMINO对流层二氧化氮垂直柱浓度。与地基观测资料的对比表明,POMINO的对流层二氧化氮柱浓度能够更好地抓住日际间的变化趋势,同时与地基观测数据的相关性也更好。目前该数据已被国内外多家高校以及科研机构用于科研使用,在未来,该数据集将对青藏高原科考项目提供更加全面的数据支持。
林金泰
降雨侵蚀力是量化青藏高原土壤侵蚀的重要基础数据之一。高精度的降雨侵蚀力数据是了解目前青藏高原水土流失现状,以及制定水土保持措施的关键,同时可以为青藏高原地质灾害防治提供有力参考。本研究基于青藏高原1-min稠密降水观测数据和高精度格点降水资料,经过订正、重构和检验等步骤,构建了一套新的青藏高原1950~2020年逐年降雨侵蚀力数据集。该数据集是目前青藏高原精度最高、时间序列最长的降雨侵蚀力数据集。
陈悦丽
本数据集为覆盖全球范围考虑积融雪过程的标准化水分距平指数(SZIsnow),该干旱指数数据集由GLDAS-2驱动产生。该指数考虑了与干旱发展相关的诸多水文过程,尤其是积融雪过程。目前许多干旱指数忽略了积融雪过程,导致不能准确地对积雪地区干旱的发生和发展进行评估,该指数很好地弥补了这一不足,解决了干旱物理机制解析与多时间尺度分析无法兼顾,不同类型干旱难以统一评估的两个难题。经验证该指数能够很好地对全球不同地区的历史干旱时间进行定量描述,其优异表现在高纬度和高海拔地区更为突出。因此本数据集可以为干旱的监测评估以及干旱相关研究提供科学参考。
吴普特, 田磊, 张宝庆
格陵兰冰盖的物质损耗是近几十年来全球海平面上升的主要贡献者,在全球变暖的趋势下,格陵兰冰盖正在加速融化,探索其物质平衡对气候的变化响应具有重要的科学意义。作者基于MEaSUREs格陵兰触地线产品和流域边界,将触地线离散化,结合1985-2015年的MEaSUREs年度冰流速数据,和BedMachine v3冰厚度数据,矢量计算触地线各通量出口单元处冰通量;我们使用RACMO2.3p2模式的表面物质平衡数据,空间计算各流域表面物质平衡,并结合冰通量结果,得到格陵兰冰盖物质平衡数据集(1985-2015年)。该数据集包括1985年、2000年、2015年三年的格陵兰冰盖各流域物质平衡结果,含有各通量出口单元位置对应的年度冰流速、冰厚度、冰通量等信息。该数据集实现了触地线处冰通量的精细评估,可以反映近三十年格陵兰冰盖各流域物质平衡的变化情况和空间分布特征,为后续格陵兰冰盖物质平衡的精细变化评估及预测,和冰盖损耗机理探究提供基础性数据。
林依静, 刘岩, 程晓
南极冰盖是全球海平面上升的最大潜在来源之一,准确确定冰盖物质收支情况是理解南极冰盖动态变化的关键,对理解冰盖演变历程、准确预测未来全球海平面上升都是至关重要的。作者基于MEaSUREs触地线产品和MEaSUREs南极流域边界,将触地线离散化,结合1985-2015年的MEaSUREs和RAMP年度冰流速数据,和BedMachine冰厚度数据,矢量计算触地线各通量出口单元处冰通量;使用RACMO2.3p2模式的表面物质平衡数据,空间计算各流域表面物质平衡,并结合冰通量结果,得到南极冰盖物质平衡数据集(1985-2015年)。该数据集包括1985年、2000年、2015年三年的南极冰盖各流域物质平衡结果,含有各通量出口单元位置对应的年度冰流速、冰厚度、冰通量等信息。该数据集实现了触地线处冰通量的精细评估,可以反映近三十年南极冰盖各流域物质平衡的变化情况和空间分布特征,为后续南极冰盖物质平衡的精细变化评估及预测,和冰盖损耗机理探究提供基础性数据。
林依静, 刘岩, 程晓
冰雪具有高反射率,冰盖表面融化会降低地表反照率进而影响区域能量平衡,表面融化形成的水文系统会影响冰盖稳定性进而影响冰盖物质平衡。本数据集基于微波辐射计与光学反照率产品,对微波辐射计当日、冬季(6-8月)平均和7月平均进行波段合成,利用Gram-Schmidt方法将微波辐射计波段合成数据与MODIS GLASS反照率产品融合,使其空间分辨率从25 km提高至0.05˚。然后基于微波辐射计当日与冬季亮温差值的阈值法对降尺度结果提取南极冰盖表面融化,得到1985-1986年、2000-2001年、2015-2016年南极冰盖表面0.05˚ 每日融化产品。该数据集0.05˚ 的空间分辨率高于目前国内外已发布数据集,凸显了辐射计和反照率数据对表面融化的响应,空间细节特征更加清晰,保持了原辐射计产品的动态范围,有效地抑制了辐射计噪声,更好的反映了山区、触地线区域和冰架的融化范围随时间的梯度演变特征,产品精度更高。该数据集的数据类型为整型,其中1代表融化,0代表未融化,255代表冰盖以外掩膜区域,数据集以“*.nc”格式存储。
魏思怡, 刘岩
最大冻结深度是季节冻土热状态的重要指标,由于全球变暖,季节冻土的最大冻结深度不断下降。发布了中国西北五省、西藏和周边地区1961-2020年每10年的最大冻结深度数据集,空间分辨率为1km。该数据集是采用2001-2010年的最大冻结深度实测数据和空间环境变量构建的支持向量机回归模型,模拟了1961-2020年中国西北、西藏和周边地区的最大冻结深度。验证结果表明:支持向量机回归模型具有良好的空间泛化能力,最大土壤冻结深度的预测值和实测值之间具有较高的一致性,1980s、1990s、2000s和2010s四个时期模拟结果的决定系数分别为0.77、0.83、0.73和0.71。预测结果的百分位区间表明,模拟结果具有良好的稳定性。基于该数据集,发现我国西北地区最大土壤冻结深度不断下降,其中,青海的下降速率最快,平均每十年下降0.53 cm。该数据集为中国西北、高山亚洲和第三极等地区季节冻土的研究提供数据支持。
王冰泉, 冉有华
基于遥感的全球表层土壤水旬度数据集(RSSSM,2003~2020)是在世界11种常用的全球微波遥感土壤水数据产品基础上,采用神经网络方法,融入了9个微波遥感反演土壤水分的质量影响因子完成。数据空间分辨率是0.1度,时间分辨率为旬。原数据覆盖2003~2018年,现更新至2020年。RSSSM数据集的时间连续性突出,除冰雪和水体外实现空间全覆盖。通过全球实测数据进行检验,可证明RSSSM数据集较已有的常用全球或区域长时间序列表层土壤水产品具有更高的时空格局精度。此外,虽然RSSSM数据是基于遥感的,未融合任何降水资料,但其年际变异与降水量(如GPM IMERG降水数据)和标准化降水蒸散发指数(SPEI)的时间变异均可较好地吻合。RSSSM数据还可一定程度反映城市化、农田灌溉、植被恢复等人类活动对土壤水分的影响。数据为tiff格式,压缩后的数据量为2.48 GB。 数据论文于2021年发表在Earth System Science Data。
陈永喆, 冯晓明, 傅伯杰
本数据集来源于论文:Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, Stefan Wunderle. (2021). Evaluation of snow extent time series derived from AVHRR GAC data (1982-2018) in the Himalaya-Hindukush. The Cryosphere, 15, 4261–4279. 在这篇文章中,分别基于地面站点数据、Landsat数据和MODIS积雪产品,首次在长时间尺度上(1982-2018)对AVHRR GAC 积雪产品在兴都库什喜马拉雅山脉的表现进行全面的评估,包括该产品的精度/准确性在长时间序列上的一致性,以及该产品与Landsat和MODIS积雪数据在空间分布上的一致性,并揭示了影响AVHRR GAC积雪产品精度的主要因素。
吴小丹
观测数据来自中国气象局乌鲁木齐沙漠气象研究所于2019年建设的塔吉克斯坦帕米尔高原冰川观测站,包含空气温湿度、大气压、风速风向、降水、雪深等数据。资料时间段为2019年11月1日—2020年11月30日,运用MS Office处理所得*.xlsx格式,数据质量较好,此数据可为研究冰川消融及其水文特征、水资源、生态环境等的潜在影响提供参考。气象观测要素,经过积累统计,加工成气候资料,为天气预报和经济活动提供珍贵的数据支持。广泛应用于农业、林业、工业、交通、军事、水文、医疗卫生和环境保护等部门领域。
霍文
中亚的生态系统脆弱,自然灾害频发,水资源短缺,冰川加速融化,是气候变化敏感区之一。在评估该地区的脆弱性、影响性和适应性时,急需高分辨率的气候预估数据集。为此,我们对来自CMIP5的三个偏差订正后的全球气候模式(MPI-ESM-MR、CCSM4和HadGEM2-ES),在中亚地区开展了9千米的动力降尺度,继而生产了一个中亚高分辨率气候预估数据集,将其命名为HCPD-CA(High-resolution Climate Projection Dataset in Central Asia)。它的历史时段是1986-2005,未来时段是2031-2050,排放情景是RCP4.5。这个数据集有4个静态变量和10个常被用于驱动生态和水文模型的气象要素。静态变量有地形高度(HGT, m)、土地利用类型(LU_INDEX, 21 categories)、陆地水体(LANDMASK, 1代表陆地, 0代表水体)和土壤类型(ISLTYP, 16 categories)。10个气象要素是日降水量(PREC,mm/day)、2米日平均/最高/最低温(T2MEAN/T2MAX/T2MIN,K)、2米日平均相对湿度(RH2MEAN,%)、10米日平均维向和经向风(U10MEAN/V10MEAN,m/s)、日平均向下短波/长波辐射(SWD/LWD,W/m2)和日平均地表气压(PSFC,Pa)。评估结果显示:这个数据产品在描述中亚各个气象要素的平均态上有很高的质量,这保证了其可用性。未来气候变化的主要特征是:升温剧烈(年均温升高1.62-2.02℃),向下短波和长波辐射显著增强,其他气象要素变化很小。HCPD-CA数据集可被用于评估未来气候变化对中亚的多方面影响,特别是在生态和水文系统上。
邱源
观测数据来自中国气象局乌鲁木齐沙漠气象研究所于2017年建设的帕米尔高原红其拉甫梯度气象观测试验站,包含各气象要素的梯度数据。资料时间段为2019年11月18日—2021年10月8日,运用TOA5合并工具及MS Office等处理所得*.xlsx格式,数据质量较好,此数据可为开展帕米尔高原和中巴经济走廊地表辐射与能量收支规律研究提供支持,为陆面过程提供参考依据。 红其拉甫气象站在我国帕米尔高原,海拔4600m,靠近中国与巴基斯坦边境,资料及其珍贵。
霍文
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。
宋沛林, 张永强
吉尔吉斯斯坦西天山Kara-Batkak冰川气象站(42°9'46″N,78°16'21″E,3280m)。 观测数据包括逐时气象要素(小时雨量(mm)、瞬时风向(°)、瞬时风速(m/s)、2分钟风向(°)、2分钟风速(m/s)、10分钟风向(°)、10分钟风速(m/s)、最大风速时风向(°)、最大风速(m/s)、最大风速时间、极大风速时风向(°)、极大风速(m/s)、极大风速时间、分钟内极大瞬时风速风向(°)、分钟内极大瞬时风速(m/s)、气压(hPa)、气压最高(hPa)、气压最高出现时间、气压最低(hPa)、气压最低出现时间)。 气象观测要素,经过积累和统计,加工成气候资料,为农业、林业、工业、交通、军事、水文、医疗卫生和环境保护等部门进行规划、设计和研究,提供重要的数据。
霍文
温湿指数(THI)1973年由奥利弗(J.E.Oliver)提出,其物理意义是湿度订正以后的温度。它考虑了温度以及相对湿度对人体舒适度的综合影响,是衡量区域气候舒适度的一项重要指标。在参考已有关于生理气候评价指标分级标准的基础上,结合青藏高原自然地理特征,面向青藏高原人居环境适宜性评价需求,研制了青藏高原(3000米以上)温湿指数及其适宜性分区结果(包括不适宜、临界适宜、一般适宜、比较适宜与高度适宜)。
封志明, 李鹏, 林裕梅
该数据集主要包括北温带湖泊在1985-2020年间4个时段的结冰观测频率值(ICO),以及湖泊所在位置、面积、高程等信息。其中,4个时间段分别为1985-1998(P1)、1999-2006(P2)、2007-2014(P3)以及2015-2020(P4),目的是提高计算时段内的“有效观测”次数,进而提高准确度。4个时段的ICO由各个时段内所有Landsat影像统计的“结冰”次数与“有效观测”次数的比值计算,其他的湖泊信息通过表格中的“Hylak_id”列与HydroLAKEs数据集相对应。此外,该数据仅保留了P1-P4均观测有效,且面积大于1平方千米的湖泊,约为3万个。该数据集可以反映近几十年来湖泊结冰情况对气候变化的响应。(详见论文)
王欣驰
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。
闫大江, 马宁, 张寅生
该数据集记录了1988年,2012年度青海省海东地区草地类型面积、载畜量统计数据,数据按照草地类组型代号分类统计,如:Ⅰ代表高寒干草原类、Ⅱ代表山地干草原类、Ⅲ代表高寒荒漠类、B代表中禾草组、J代表灌木组等,具体的草地组类型代号及其对应的含义见数据集中的“青海省草地类组型代号说明.pdf”。数据整理自青海省草原总站与1988年和2012年发布的《青海省草地资源统计册》。数据集包含3个数据表,分别为:海东地区各类型草地面积、载畜量统计数据(1988),海东地区草地类型面积、载畜量统计数据(2012)和青海省草地类组型代号说明。数据表结构相似。例如海东地区草地类型面积、载畜量统计数据(2012)表共有8个字段: 字段1:类型代号 字段2:草地类型名称 字段3:草地面积 字段4:草地可利用面积 字段5:平均单产鲜草 字段6:平均单产可食鲜草 字段7:载畜量 字段8:草地型等
青海省农业农村厅
本数据集为全球高精度高程控制点数据集,包含各个高程控制点地理定位,高程,采集时间等信息。 从卫星激光测高数据中提取的激光足印高程的精度受到许多因素的影响,如大气、有效载荷仪器噪声、激光足迹中的地形起伏等,导致精度不确定。该数据集通过评估标签和测距误差模型所构建的筛选准则对ICESat卫星从2003年到2009年的测高观测数据进行筛选提取,以期地形测图或依赖良好高程信息的其他科学领域提供高精度的全球高程控制点。经验证,平地(坡度<2°)、丘陵(2°≤坡度<6°)、山地(6°≤坡度<25°)区域的高程精度分别满足0.5m、1.5m、3m的精度要求。
谢欢, 李彬彬, 童小华, 唐鸿, 刘世杰, 金雁敏, 王超, 叶真, 陈鹏, 许雄, 柳思聪, 冯永玖
在地球大数据科学工程专项时空三极环境项目第一课题“三极大数据共享与集成” (XDA19070100)资助下,中国科学院西北生态环境资源研究院车涛课题组利用机器学习方法结合多源雪深产品数据、环境因子变量及地面观测雪深数据等制备了北半球长时间序列逐日雪深数据集。 首先将人工神经网络、支持向量机和随机森林方法在积雪深度融合的适用性进行对比研究,发现随机森林方法在雪深数据融合上表现出较强优势。其次,利用随机森林方法,结合AMSR-E,AMSR2,NHSD和GlobSnow等遥感雪深产品及ERA-Interim和MERRA2等再分析资料格网雪深产品和环境因子变量等作为模型的输入自变量,用中国气象台站数据(945)、俄罗斯气象台站(620)、俄罗斯积雪调查数据(514)和全球历史气象网络逐日数据(41261)等43340个地面观测站点的雪深数据作为参考真值对模型训练与验证,在专项“地球大数据科学工程”提供的云平台上制备1980~2019年积雪水文年(上一年9月1日至本年度5月31日)的逐日格网雪深数据集。由于1980~1987年微波亮温数据为隔日数据,所以这段时间的数据会出现少量条带缺失现象。利用全球积雪模型对比计划及独立的地面观测数据进行验证,融合数据集的质量在整体上有所提升。利用地面观测数据及融合前的雪深产品对比来看,融合数据的决定系数(R2)从6种融合前产品中最高的0.23(GlobSnow雪深产品)提升至0.81,而相应的均方根误差(RMSE)和平均绝对误差(MAE)也减小至7.7 cm 和2.7 cm。
车涛, 胡艳兴, 戴礼云, 肖林
本数据集由东亚季风区中国祁连山地区树木年轮碳氧数据组成。祁连山地区树轮包括4棵树芯,树种为祁连圆柏,测定的同位素数据为921个。树轮原木经过化学处理提取纤维素,所得纤维素样品包裹在银杯中,在用DELTA V Advantage稳定同位素质谱仪上测定同位素比值,分析误差小于0.21‰。实验分析在中国科学院地质与地球物理研究所土壤结构与矿物实验室完成。该数据对对东亚季风区古气候方面的研究具有一定的意义。
许晨曦
本数据集由东亚季风区中国祁连山地区树木年轮宽度数据组成。祁连山地区树轮包括52棵树芯,树种为祁连圆柏,测定的宽度数据为17081个,测量精度为0.01mm。树轮的宽度测量使用LINTAB 6树木年轮分析仪测量,并使用COFFCHA程序对交叉定年进行检验,以保证对所有树芯样本的量测和定年都准确无误。实验分析在中国科学院地质与地球物理研究所土壤结构与矿物实验室完成。该数据对对东亚季风边缘区的古气候方面的研究具有一定的意义。
许晨曦
格拉丹东地区是青藏高原重要的、典型的大江大湖源区。本数据集提供了不同时间尺度,不同分辨率的,覆盖长江和色林错源区冰川的DEM,用以计算源区冰川表面高程的季节变化和年代际变化。数据集包括了2016-2017年7景不同月份5米分辨率的TanDEM-X数据,可用以冰川表面高程的季节性变化计算;包括了1景1976年30米分辨率的KH-9 DEM,5景2011年30米分辨率的TanDEM-X,1景2014年和3景2017年30米分辨率的TanDEM-X,可用以计算1976-2000,2000-2011,2011-2017年期间冰川表面高程变化。同时采用Landsat ETM数据勾画,并按照RGI6.0分割了1976年的冰川轮廓数据;右图显示了该数据集的空间和时间覆盖信息,底图为正射校正后KH-9影像。
陈文锋
冰盖的表面高程对气候变化非常敏感,因此冰盖的高程变化被认为是评估气候变化的一个重要变量。长期的冰盖表面高程变化的时间序列是对理解气候变化有着重要作用的基础数据。将微波雷达卫星测高的观测数据连接起来可以建立目前最长的冰盖表面高程时间序列。但是,已有的任务间偏差改正方法在交叉标定不同的观测任务时仍然有误差残留。我们通过对常用的平面拟合模型进行修改,通过任务间偏差和升降轨道偏差的同时约束改正来确保不同任务间表面高程时间序列的自洽和连贯。基于这种方法,我们使用Envisat和CryoSat-2数据构建了2002-2019年间的南极冰盖高程变化时间序列。该时间序列是月均的格网数据,格网的空间分辨率为5-km。使用机载和星载激光测高数据对结果评估发现,与传统的方法相比,该方法可以将任务间偏差改正的精度提高40%。使用解算得到的高程时间序列,结合由密实化模型得到的表面过程造成的冰盖体积变化,我们发现冰动力过程使得阿蒙森海沿岸区域的冰盖成为南极冰盖体积损失最大的区域,而表面过程则主导了托腾冰川、毛德皇后地、伊丽莎白公主地和别林斯高晋海沿岸等冰盖的体积变化过程。西南极的冰体积损失超过了东南的体积积累。在2002–2019期间,南极冰盖的体积以初始速率−68.7 ± 8.1 km3/yr,加速度−5.5 ± 0.9 km3/yr2加速损失。
张保军, 王泽民, 杨全明, 柳景斌, 安家春, 李斐, 耿红
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
充分了解中国温带半干旱草地蒸散发的时空变化,可以提高我们对全球半干旱区气候、水文和生态过程的认识。本研究基于区域内13个站点的涡度相关系统观测数据,结合气象及遥感数据,利用机器学习方法(支持向量机),生产了年限为1982-2015年,空间分辨率为1km,时间分辨率为8天的长序列中国温带半干旱草地蒸散发数据集。该数据集在站点实测数据的验证和流域水量平衡的对比中,均表现较好。(详细过程请参阅参考文献)
雷慧闽
公里级、空间完整(无缝)的地表温度产品在全球变化等领域具有广泛的应用需求。基于遥感观测反演的地表温度具有较高的可信度,融合从热红外和微波观测反演的地表温度,是获取具有一定精度、空间完整地表温度的有效途径。基于这一指导思想,作者发展了反演中国区域1km、无缝地表温度的方法框架,并生成了相应的数据集(2002-2020). 首先采用基于查找表的AMSR-E/AMSR2 地表温度反演算法反演得到AMSR-E/AMSR2 地表温度,之后采用地理加权回归对AMSR-E/AMSR2 地表温度进行降尺度,得到1km 地表温度,最后使用多尺度卡尔曼滤波融合AMSR-E/AMSR2 1km地表温度和MODIS地表温度,生成1km无缝地表温度数据集。 地面验证评价结果表明,该LST的均方根误差(RMSE)约为3K,空间分布于MODIS LST、CLDAS LST的一致性较好。
程洁, 董胜越, 施建成
海冰表面的积雪控制着能量收支,影响海冰的生长和消融,具有重要的气候作用。积雪厚度作为积雪的重要属性之一,对于理解气候变化、估算海冰参量等具有重要意义。被动微波数据可以获取逐日半球尺度的积雪厚度观测数据,但是原先提出的估算方法会产生明显的低估,限制了该方法的进一步应用。我们构建了一个新的且鲁棒的线性回归公式,通过引入低频信号明显改进了被动微波反演积雪厚度的效果,并且基于AMSR-E,AMSR-2和SSMIS被动微波辐射计亮温数据,应用该方法生成了2002—2020年逐日南极海冰表面积雪厚度数据集。采用7年的机载Operation IceBridge (OIB) 飞行计划获取的积雪厚度测量数据进行回归分析,发现采用垂直极化下37和19 GHz的亮温计算得到的极化梯度率(gradient ratio, GR),即GR(37/7),是用于南极海冰表面积雪厚度估算的最优极化梯度率,均方根偏差约为8.92厘米,相关系数为-0.64,并获取了相应的线性回归公式系数。GR(37/19)用于基于SSMIS的积雪厚度估算,用来填补AMSR-E和AMSR-2之间的观测空白。不同辐射计估算的积雪厚度进行了一致性校正。基于高斯误差传递法估算的积雪厚平均不确定度约为3.81厘米,占积雪厚度的12%左右。与Australian Aantarctic Data Centre发布的实测数据对比发现提出的方法明显优于原有的方法,平均差异和均方根偏差约为5.64厘米和13.79厘米,而原有方法的平均差异和均方根偏差约为-14.47厘米和19.49厘米。与Antarctic Sea Ice Processes and Climate 计划发布的船载观测数据对比发现提出的方法略优于原有方法(均方根偏差分别为16.85厘米和17.61厘米),并且该方法在海冰生长期和融化期有着相似的精度,表明该方法也可以应用于消融季。基于该套数据,我们发现2002—2020年在南极所有海域和季节内海冰表面积雪厚度均呈现降低趋势。该数据可以进一步用于再分析数据的评估,海冰厚度估算和气候模式等方面。
沈校熠, 柯长青
地表温度(Land Surface Temperature,LST)是地表能量平衡研究的关键参数,被广泛用于气象、气候、水文、农业和生态等领域研究。卫星(热红外)遥感作为获取全球和区域尺度LST信息的重要手段,容易受到云层覆盖和其他大气条件的影响,导致LST遥感产品时空不连续,极大限制了LST遥感产品在相关研究领域的应用。 本数据集的制备首先基于经验正交函数插值方法,利用Terra/Aqua MODIS 地表温度产品重建理想晴空条件下的LST,然后使用累积分布函数匹配方法融合 ERA5-Land再分析数据获取全天候条件下的LST。该方法充分利用了原始MODIS遥感产品的时空信息以及再分析数据中的云影响信息,缓解了云层覆盖对LST估算的影响,最终重建得到较高质量的全球0.05°时空连续的理想晴空和全天候LST数据集。 本数据集不仅实现了时空无缝覆盖,并且具有良好的验证精度。重建的理想晴空LST数据在全球17种土地覆盖类型实验区内,平均相关系数(R)为0.971,偏差(Bias)为-0.001 K至0.049 K,均方根误差(RMSE)为1.436 K至2.688 K。重建的全天候 LST 数据与地面站点实测数据的验证结果:平均 R 为 0.895,Bias为0.025 K 至 2.599 K, RMSE为4.503 K至7.299 K。 本数据集的时间分辨率为逐日4次,空间分辨率为0.05°,时间跨度为2002年-2020年,空间范围覆盖全球。
赵天杰, 余沛
本数据集包含了全球77个冰川水化学要素(Na+、K+、Mg2+、Ca2+、TDS)的平均浓度、高亚洲典型冰川沉积物的矿物组成、以及高亚洲八个山系的冰川年径流量。本数据集来自数据集提供者对高亚洲19条冰川的实地监测,国内外已公开发表的数据资料、以及文献作者向数据集提供者私下共享的数据资料。本数据集可用于评估气候变暖对冰川侵蚀和化学风化作用的影响、可用于评估气候变暖驱动的冰川消融对下游生态系统和元素循环的潜在影响。
李向应
This is a dataset of shrubline shifts and recruitment including 24 willow shrubline plots on the eastern Tibetan Plateau. It includes the following information: 1) Shrub recruitment series; 2) Climatic sensitivity of shrub recruitment; 3) Shrubline shifts and their potential drivers.
Yafeng Wang, Eryuan Liang
中国逐日雪深模拟预估数据集是采用人工神经网络模型,以NEX-GDPP模式数据集作为依托,预估的中国未来逐日雪深数据,其中雪深模拟的人工神经网络模型是以当天的最高温度、最低温度、降水数据和当天雪深数据作为模型的输入层,次日的雪深数据作为模型目标层对模型搭建,然后运用国家气象站数据对搭建的雪深模拟模型进行训练和验证进行训练,模型验证结果显示:模型迭代时空模拟能力较好;累积雪盖持续时间、累积积雪深度的模拟值和验证值的空间相关性为0.97和0.87,累积雪深的时间和空间相关性分别为0.92和0.91。在模型最优基础上,用此模型迭代模拟未来中国区域内逐日雪深数据。该数据集可以为中国未来雪灾风险评估、积雪范围变化研究以及气候变化研究提供数据支持。该数据基本信息如下:历史基准时段(1986~2005年)、未来模拟(2016~2065年)两个时间段,以及RCP4.5和RCP8.5两种情景,20个气候模式。其空间分辨率为0.25°*0.25°。该数据的投影方式为EASE-Gr,数据保存格式为nc格式。 下面是nc中数据文件信息 time:时长(单位:天)历史基准时段(起始时间:1986年1月1日,终止时期:2005年12月31日) 未来模拟(起始时间:2016年1月1日,终止时期:2065年12月31日) longitude = 320矩阵共320列 latitude = 160矩阵共160行 depth:雪深(cm) X Dimension: Xmin = 60.125; //矩阵x方向左下角网格的角落点坐标 Y Dimension: Ymin = 15.125; //矩阵y方向轴左下角网格的角落点坐标
陈虹举, 杨建平, 丁永建
本数据为降水数据,是热带降水测量任务TRMM(Tropical Rainfall Measuring Mission)逐月降水产品TRMM 3B43,融合青藏高原为主主体的范围区域(25~40°N;73~105°E)内332个气象站点降水数据,该气象站降水数据源自中国气象局国家气象信息中心。本数据集采用站点3°插值优化变分订正方法计算获得的再分析数据集。时间跨度为1998年1月至2018年12月的月样本资料,空间覆盖范围是25~40°N;73~105°E,空间分辨率为1°*1°。
徐祥德, 孙婵
该数据集为发源于青藏高原的黄河流域水文站河水的季节性水文观测数据。共两个水文站:1、黄河中游龙门水文站,为2013年逐周水文数据,包括水温(T)、径流量(Qw)、物理侵蚀速率(PER)、pH。2、黄河唐乃亥水文站,为2012年7月至2014年6月河水逐月数据,包括径流量(Qw)、泥沙量(silt)、pH、EC。该数据集委托黄河水利委员会水文站工作人员观测,为青藏高原隆升背景下水文学、水化学、水圈循环等研究提供基础水文资料。
金章东, 赵志琦
数据覆盖区域为川藏交通廊道,为矢量线数据。数据定义了其活动时期,并对其进行了命名。描述了断层走向、性质、活动时期、出露情况。但内容有所缺失,次级断裂带没有命名。此数据集川藏交通廊道范围内共有590条线状要素,但有部分线状要素为同一断裂带的多部分要素。活动断裂带往往是不同板块、不同地块的结合带,是地壳的相对薄弱带,易诱发极为严重的地震灾害,也是崩塌、滑坡、泥石流等地质灾害的集中发育带。对断裂带位置及性质的判断对地质灾害的风险易发性评价具有重要意义,是研究地质灾害的关键因子。
王俪璇
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件