太阳分光光度计的测量数据可以直接用来反演非水汽通道的光学厚度、瑞利散射、气溶胶光学厚度、大气气柱的水汽含量(使用水汽通道936nm处的测量数据)。青藏高原气溶胶光学特性地基观测数据集采用Cimel 318太阳光度计连续观测获得,涉及珠峰站和纳木错站共两个站点。数据覆盖时间从2009年到2016年,时间分辨率为逐日。太阳光度计在可见光至近红外设有8个观测通道,中心波长分别为:340、380、440、500、670、870、940和1120 nm。仪器的视场角为1.2°,太阳跟踪精度为0.1°。根据太阳直接辐射可获得6个波段的气溶胶光学厚度,精度估计为0.01-0.02。最终采用AERONET统一反演算法,获得气溶胶光学厚度、Angstrom指数、粒度谱、单次散射反照率、相函数、复折射指数和不对称因子等。
丛志远
MODIS土地覆盖类型产品是每年从Terra数据中提取的土地覆盖特征不同分类方案的数据分类产品(MOD12Q1)。本数据为标准MODIS土地覆盖产品MOD12Q1经过重新投影到地理坐标,空间分辨率为0.5度的产品。基本的土地覆盖分类为国际地圈生物圈计划(IGBP, International Geosphere Biosphere Programme)定义的17类,包括11类自然植被分类,3类土地利用和土地镶嵌,3类无植生土地分类。其覆盖经度范围-180-180度,纬度范围为-64-84度。数据格式为GeoTIFF。 该数据可免费使用,版权属于 University of Maryland, Department of Geography and NASA
S.Channan, Channan, 徐希燕
青藏高原湖泊动态数据集采用美国陆地资源卫星(Landsat)遥感数据为主,采用波段比值与阈值分割方法制作,数据覆盖时间从1984年到2016年,时间分辨率为5年一期,覆盖范围为青藏高原,空间分辨率为30m。水体面积提取方法采用波段比值(B4/B2)或者水体指数(MNDWI)为主,构建分类树,算法构建考虑水体的光谱特征在时间和空间上的变化,并且考虑水体所处的空间为主的坡度、坡向信息调整决策树的阈值。长时间序列星载卫星数据来自Landsat MSS、TM、ETM+和OLI等系列传感器。水体信息提取的最小单元为2*2个像元,小于0.36*10^-2Km²的水体全部剔除。通过高分辨率遥感数据提取的水体信息以及目视解译确定的水体检验点的验证表明青藏高原水体面积信息的总体精度优于95%。数据以shape文件保存,投影方式为Albers投影,中央经线为105 °,双标准纬线纬度为25 °和47 °。
宋开山, 杜嘉
该NDVI数据集是由NASA EOSDIS LP DAAC 和美国地质调查 USGS EROS共同发布的第六版MODIS均一化植被指数产品(2001-2016)。该产品的时间分辨率是16天,空间分辨率0.05度。该版本是在原有1公里分辨率的NDVI产品(MYD13A2)基础上生成的气候模拟格点(CMG)数据产品。 请在致谢中以下方式说明该数据的来源: The MOD13C NDVI product was retrieved from the online in courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, The [PRODUCT] was (were) retrieved from the online [TOOL], courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota.
NASA
本数据为盈科绿洲农田、湿地、戈壁、沙漠与荒漠观测的一个生长周期内的植被覆盖度数据集。数据观测从2012年5月25日开始到9月14日结束,7月下旬之前每5天观测1次,之后10天观测1次。 测量仪器与原理: 采用数码相机拍照的方法测量了盈科绿洲的农田、湿地、戈壁、沙漠与荒漠的典型地物的植被覆盖度。样方的设计、照片拍摄方法和数据处理方法都经过一定的分析和考虑。 具体分几条进行描述: 0. 测量仪器:简易观测架搭配数码相机,将数码相机置于支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1. 样方设置和“真值”获取:玉米等低矮植被样方大小10×10米,果树样方30米×30米。每次测量时沿两条对角线依次拍照,共取9张照片(当地表覆盖非常均一时也有少于9张的情况),均匀分布在样方内。9张相片处理得到各自覆盖度之后取平均,最终得到一个样方的覆盖度“真值”。 2. 拍摄方法:针对低矮植被如玉米,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;针对较高植被如果树,在树冠下面从下向上拍摄照片,叠加配合对树冠下地表低矮植被从上向下的拍摄,得到植株附近的覆盖度,再拍摄植株之间非树冠投影区域的低矮植被,计算植株间隙的覆盖度。最后通过树冠投影法,获得树冠的平均面积。根据垄行距离计算植株树冠下与植株间隙的面积比例,加权获得整个样方的覆盖度。 3. 数据处理方法:采用一种自动分类方法,具体见“参考文献”第3条文献(Liu et al., 2012)。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 配套数据: 在记录表中文字记录了植被的种类、株高、垄宽、行宽、拍摄高度信息,同时附有数码相机拍摄的场景照片和田埂照片(农田)。 数据处理: 基于数字图像里面的分类方法,对植被和非植被像元分类后得到相片代表样方的植被覆盖度。
穆西晗, 黄帅, 马明国
该NDVI数据集是最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长序列(1981-2015)均一化植被指数产品,版本号3g.v1。 该产品的时间分辨率是每月两次,空间分辨率1/12度。时间跨度1981年7月至2015年12月。该产品为共享数据产品,可直接从ecocast.arc.nasa.gov下载。 详情请参考https://nex.nasa.gov/nex/projects/1349/
NCAR
利用MOD10A1和MYD10A1逐日积雪产品和AMSR-E雪水当量产品(2000.02.25-2002.08.31、2011.08.31-2016.12.31均采用IMS雪冰产品代替AMSR-E雪水当量产品)作为输入,采用MODIS上下午星积雪产品合成、临近日合成、MODIS和AMSR-E/IMS积雪产品合成方法,逐步消除云的干扰,最终得到北半球每日无云积雪图像。 数据集采用Albers(阿尔伯斯等积)投影方式,空间分辨率500m。
戴礼云
近地表土壤的冻结/融化状态表征着陆地表层过程的休眠和活跃,这种冻融相态交替能引起一系列复杂的地表过程轨迹模式突变,影响着土壤的水热特性、地表径流和地下水补给等水循环过程,同时也通过水和能量循环机制影响气候变化。本数据集是基于AMSR-E和AMSR2被动微波亮温数据,利用冻融判别式算法制备的全球近地表冻融状态(空间分辨率:0.25°;时间跨度:2002-2019年),可用于分析全球近地表冻融循环的开始/结束日期、冻结/融化时长、冻结范围等指标的空间分布和趋势变化,可为理解全球变化背景下陆表冻融循环与水分、能量交换过程的相互作用机制提供数据支持。
赵天杰
青藏高原被称为“世界第三极”和“亚洲水塔”,一个较为准确的青藏高原冻土图对当地寒区工程和环境建设有着重要意义。因此,为了满足工程和环境需求,通过多源遥感数据(高程、MODIS地表温度、植被指数和土壤水分)建立决策树对青藏高原多年冻土和季节冻土进行了划分。数据为栅格格式,DN=1为多年冻土;DN=2为季节冻土。 其中高程数据来自于1kmx1km的中国DEM(Digital Elevation Model)数据集(http://westdc.westgis.ac.cn);地表温度是欧阳斌等通过 Sin-Linear 法拟合后的日平均地表温度年均值。文中在MODIS 地表度产品用Sin-Linear 法拟合估算出日平均地表温度基础上,为了缩小与已有冻土图前后时间差异,以研究区2003年地表温度做为冻土分类的信息源;植被信息采用Aqua 和Terra 星的2003 年 16 天合成产品数据(MYD13A1 和 MOD13A1)提取植被指数值;土壤水分值根据 2003 年 AMSR-E观测质量较好的5月份升轨数据得到。因此,基于以上数据信息,以1:300万青藏高原冻土图和1:400万<<中国冰川冻土沙漠图>>为先验信息得到决策树的分类阈值,从而对青藏高原的冻土类型进行分类。 最后,对于分类结果利用西昆仑山、改则和温泉的调查冻土图以及其它已有的青藏高原冻土图进行了验证和对比,统计结果显示基于多源遥感信息的青藏高原冻土图多年冻土面积占青藏高原总面积的42.5%(111.3 × 104 km²),季节冻土面积占青藏高原总面积的53.8% (140.9 × 104 km²),这个结果与先验图(1:300万青藏高原冻土图)具有较好的一致性。此外,文中基于不同冻土图之间的总体精度和Kappa系数表明:不同方法编制或模拟的青藏高原冻土图在空间分布格局上基本保持一致,而分类不一致的地方大部分在多年冻土与季节冻土的分界边缘地带。
牛富俊, 尹国安
本数据为在盈科绿洲观测的植被FPAR数据集。数据观测从2012年5月25日开始,至2012年7月8日结束。 测量仪器与原理: 利用北京师范大学ACCUPAR测量冠层的FPAR。在盈科绿洲5km*5km样方内选择18个玉米样方,1个果园和1个人工白杨林样方进行测量。 其中玉米地样方测量四个PAR分量:冠层上总入射PAR,冠层下透过PAR,冠层上反射PAR和冠层下反射PAR。 对于果园和人工林,测量两个量:冠层外总入射PAR,冠层下透射PAR。 配套数据: 植被的种类、株高、垄行结构等信息。 数据格式: EXcel格式。
马明国
该套南极海冰数据集共包括四套数据,均来自SMMR、SSM/I和SSMI/S三个传感器,采用被动微波遥感反演。其中SMMR为Nimbus-7卫星搭载的扫描式多通道微波辐射计,工作周期为1978年10月26日至1987年7月8日。1987年7月至今,使用美国国防卫星计划DMSP卫星群上搭载的一系列被动微波遥感数据SSM/I和微波成像专用传感器SSMIS提供的数据。 前三套为海冰密集度数据,覆盖范围为南极地区,空间分辨率为25 km: (1)数据来自Nimbus-7 SMMR和DMSP SSM/I-SSMIS Version 1,利用NASA Team算法反演得到,覆盖时间从1978年11月到2017年2月,时间分辨率为逐月,数据每月存放一个bin文件; (2)数据来源与第一套相同,覆盖时间从1978-10-26到2017-2-28,时间分辨率为两天,空间分辨率为25km,数据每年存放一个文件夹,每隔一天存放一个bin文件; (3)数据来自Near-Real-Time DMSP SSMIS,利用NASA Team算法反演得到,覆盖时间从2015-1-1到2018-2-3,时间分辨率为逐日,数据每日存放一个bin文件;每个文件由300-byte的文件头(数据时间信息、投影方式、文件名…)和316*332的矩阵组成。 第四套数据为海冰覆盖范围和海冰面积时间序列。覆盖时间从1978年11月到2017年12月,为南极地区海冰覆盖范围、海冰面积的时间演变序列,时间分辨率为逐月,每月存放一个ASCII文件;每个文件由表头(时间、数据类型…)和39*1的海冰覆盖矩阵和39*1的海冰面积矩阵组成。 数据的详细情况见美国冰雪数据中心NSIDC网站-数据说明http://nsidc.org/data/NSIDC-0051;http://nsidc.org/data/NSIDC-0081;http://nsidc.org/data/G02135
李双林, 刘娜
由于青藏高原地区季节性积雪具有赋存时间短、雪层较薄的特点,在对水循环等问题的理解中,迫切需要日时间尺度的积雪覆盖率动态监测数据。本数据集基于MODIS Snow Cover Daily L3 Global 500 m Grid数据,包括MODIS/Terra上午星数据(MOD10A1)和MODIS/Aqua下午星数据(MYD10A1)的归一化积雪指数NDSI数据产品,数据格式为hdf,投影方式为正弦曲线地图投影,结合90m的SRTM地形数据和多种云覆盖下积雪覆盖率估算算法的优势,实现云覆盖条件下的积雪覆盖率再估算,满足高亚洲地区逐日少云(< 10%)数据产品的生产要求,构建了 2002 - 2016 年高亚洲地区 MODIS 逐日积雪覆盖率数据集。选取无云条件下的二值积雪产品作为参考,通过云量分布和积雪总面积的时空对比,表明该产品的时空特征和二值产品具有较好的一致性。以 2013 年冬季为例,当积雪覆盖率大于 50%时,其相关性可达 0.8628。本数据集可为高亚洲地区的积雪动态监测、气候环境、水文和能量平衡、灾害评估等研究提供逐日积雪覆盖率数据。
邱玉宝
本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2013年5月19日开始,9月15日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 超级站:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.1.2其它四个站:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 其它四个站:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 玉米:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.1.2芦苇:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 芦苇:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。
耿丽英, 家淑珍, 李艺梦, 马明国
采用供需平衡的分析方法,分别计算流域总体及各县区水资源供给量及需求量的基础上,评估流域水资源系统脆弱性。 采用IPAT等式设置未来水资源需求情景,即通过设定未来的人口增长率、经济增长速度、单位GDP耗水量等变量来建立需水情景。以2005年为基准年,预测未来2010-2050年的各县市水资源需求情景。人口规模、经济规模采用配套预测数据。 应用瑞典水文气象研究所HBV概念性水文模型的基本结构,设计了在气候变化下流域变化趋势的模型,以冰川融化情景为模型的输入,构建气候变化下出山径流情景。依据流域水资源配置的国家地方规定设置配水方案,综合计算水资源供给量。综合供需情况,以缺水率为指标评价水资源系统脆弱性。通过计算流域主要县市的(小麦生产)土地压力指数,分析了流域气候变化、冰川融化及人口增长情景下土地资源的供需平衡,评价了农业系统脆弱性。分别运用迈阿密公式及HANPP模型计算了未来情景下,流域各主要县市净初级生物生产量及初级生物量的人类占用,以供需平衡角度评估生态系统脆弱性。
杨林生
青藏高原平均海拔4000m以上,是北半球中低纬度海拔最高、积雪覆盖最大的地区。积雪不仅是青藏高原季节性变化最大的下垫面和重要的生态环境组成要素,冰雪融水是高原及其下游地区重要的水资源。同时,高原积雪作为一种重要的陆面强迫因子,与东亚、南亚季风以及长江中下游的旱涝等灾害性天气紧密相关,是短期气候预测的重要指示因子和全球气候变化最为敏感的响应因子之一。积雪深度是指积雪表面到地面的垂直深度,是表征积雪特征的重要参数和常规气象观测要素之一,是估算雪水当量、研究积雪气候效应、流域水量平衡和融雪径流模拟以及监测和 评估雪灾发生和等级划分的重要参数。 在本数据集中,青藏高原边界采用了以自然地貌为主导因素,同时综合考虑海拔高度、高原面和山地完整性原则确定的高原范围。高原主体部分在西藏自治区和青海省,面积257.2万km²,约占我国陆地总面积的26.8%。雪深观测数据是经过质量检测和质量控制的逐月最大雪深资料。研究范围内共有102个气象站,多数始建于20世纪50-70年代,部分站点在这一时期存在有,些月份或年份缺测情况,最后采用了1961-2013年有完整观测记录的时间。时间分辨率为逐日,覆盖范围为青藏高原,其所有数据进行了质量控制。准确而详实的高原雪深数据对气候变化诊断、亚洲季风的演变和区域融雪水资源的管理具有重要意义。
国家气象信息中心, 西藏自治区气象局
全球Cryosat-2 GDR数据集由欧空局(ESA)制作,数据覆盖时间从2010年到2016年,覆盖范围为全球。 2010年4月8号,ESA发射了Cryosat - 2高倾斜极轨卫星。该卫星上搭载了合成孔径干涉雷达高度计SIRAL,主要用于监测极地的冰层厚度和海冰厚度变化,进而研究极地冰层的融化对全球海平面上升的影响,以及全球气候变化对南极冰厚的影响。这种高度计工作在Ku波段,工作频率为13.575 GHz,包括3种测量模式:一是低分辨率指向星下点的高度计测量模式(LRM),可获得陆地、海洋和冰盖所有表面观测值,它的处理过程与ENVISAT/RA - 2 类似,沿轨分辨率为5到7 km;二是合成孔径雷达(SAR)测量模式,主要为提高海冰观测精度和分辨率,可使沿轨分辨率达到250 m左右;三是干涉合成孔径雷达模式(InSAR),主要为提高冰盖或冰架边缘等地形复杂区域精度。 Cryosat -2/SIRAL数据产品主要包括0级数据、1b级数据、2级数据和高级数据。Cryosat - 2/SIRAL产品由XML头文件(.HDR)和数据产品文件(.DBL)两个文件组成,HDR文件是辅助性的ASCII文件,用于快速识别检索数据文件。1b级产品是按照测量模式分开存储的,不同模式的数据记录格式也有所不同。LRM模式和SAR模式的每个波形有128个采样点,SARIn模式的波形则有512个采样点。2级GDR产品可以满足大多数的科学研究应用,包括了测量时间、地理位置、高度等信息。并且,GDR产品中的高度信息已经经过了仪器校正、传输延迟改正、几何改正和地球物理改正(如大气改正与潮汐改正)。GDR产品是单独的全球性的全轨道数据,即三种模式的测量结果,经过不同的处理过程后,按照时间先后顺序,合并到一起,从而统一了数据记录格式。三种模式的数据采用了不同的波形重跟踪算法来获得高度值,在最新更新的Baseline C数据中,LRM模式的数据采用了3种算法,分别为Refined CFI、UCL和Refined OCOG。
沈国状, 傅文学
Sentinel-1A/B卫星使用近极地太阳同步轨道,轨道高度693 km,轨道倾角98.18°,轨道周期99 min,搭载了C波段合成孔径雷达(SAR),设计使用寿命为7年(预期12年)Sentinel-l 具有多种成像方式,可实现单极化、双极化等不同的极化方式。Sentinel-1A SAR共有4种工作模式:条带模式(Strip Map Mode,SM)、超宽幅模式 (Extra Wide Swath,EW)、宽幅干涉模式 (Interferometric Wide Swath,IW) 和波模式 (Wave Mode,WV)。A星于2014年4月成功发射,同一区域重访周期为12天,B星2016年4月成功在轨运行,目前重返周期达到3-6天,双星运行以后,南极地区S1数据获取频率大幅度增加。 本数据集为南极冰盖和格陵兰冰盖地区哨兵一号SAR数据。 该数据波段为C波段超宽幅地距多视数据,分辨率为20m*40m, 时间分辨率和往返周期有关,为12天,幅宽为400km,噪声水平为-25dB,辐射测量精度1.0dB。 本数据每年覆盖时间为:南极10月到来年3月,格陵兰4月到9月;覆盖范围南极冰盖冰架地区和格陵兰冰盖。
张露
本数据集是1976年青藏高原冰川数据,使用了205景Landsat MSS/TM卫星多光谱遥感数据,其中189景(覆盖青藏高原研究区92%)在1972-79年,而116景为1976/77年。但藏东南地区由于云、雪的影响,高质量MSS数据不能获得,因此,藏东南部分区域通过逐年筛选,使用了所能获得最早的高质量Landsat TM数据,包括14景1980s(1981,1986-89,覆盖青藏高原研究区6.5%)和2景1994年数据(覆盖青藏高原研究区1.5%)。所用遥感数据,77%为冬季数据;61%为1976/1977年Landsat MSS/TM影像数据,因此,1976年为本数据集代表年份。本数据集冰川数据是青藏高原净冰川覆盖范围,不包括表碛覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容:冰川编号FID_smglac,基于Albers等积圆锥投影计算的冰川面积area_km2,所在流域在我国冰川编目中冰川流域的二级编码code, 所在流域在我国冰川编目中冰川流域一级编码First_code,所在流域中文名称name,所在流域英文名称Ename,冰川斑块周长Peremeter(km),斑块中心点X坐标(decimal degree), 斑块中心点Y坐标(decimal degree)。 数据的投影方式:Albers等积圆锥投影。 格网单元:30m 数据加工方法:基于205/16景Landsat MSS/TM卫星数据,校正、镶嵌为假彩色合成影像(MSS, RGB:321;TM, RGB:543),采用人工目视解译方法,参考不同波段比值法结果,结合SRTM DEM V4.1数据与Google Earth 同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(30m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法获得的数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137 原始遥感资料数据精度:60m。 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(30m)。 加工后数据精度:通过分析典型区数据,最大误差为4%。TPG1976总体数据误差为6.4%。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302),第二次青藏高原综合科学考察研究资助(2019QZKK0202),中国科学院“十三五”信息化建设专项资助(XXH13505-06), 国家自然科学基金项目(41530748, 91747201)。
叶庆华, 吴玉伟
随着SAR干涉测量技术的不断进步,使得高精度获取冰川区的多时相DEM成为了可能。特别是,2000年美国国家航空航天局(NASA)主导的航天飞机雷达制图计划(SRTM)提供了覆盖全球56ºS - 60ºN范围的DEM资料;德国宇航局(DLR)的TanDEM-X双站SAR干涉测量系统能够提供全球范围高分辨率、高精度DEM。这些高质量、大覆盖范围的SAR干涉测量数据,以及发布的DEM数据产品,为利用多时相DEM探测冰川厚度变化提供了宝贵的基础资料。 青藏高原典型冰川厚度变化数据的时间段为2000-2013年,覆盖范围为普若岗日和祁连山西部地区,空间分辨率30米。利用TanDEM-X双站InSAR数据和C波段 SRTM DEM,首先采用差分干涉测量方法高精度的生成TanDEM-X DEM,然后在进行DEM精确配准的基础上,通过对比不同时期获取的DEM数据,估算冰川厚度变化。该数据集采用Geotiff格式,每个典型冰川冰厚变化存储为一个文件夹。 数据的详细情况见青藏高原典型冰川厚度变化数据集-数据说明。
江利明
本数据集是2001年青藏高原冰川数据,使用了150景Landsat7 TM/ETM+卫星多光谱遥感数据,时间主要从1999年至2002年,72%来源于2000/2001年,71%遥感数据成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容:冰川编号FID_smglac,基于Albers等积圆锥投影计算的冰川面积area_km2,所在流域在我国冰川编目中冰川流域的二级编码code, 所在流域在我国冰川编目中冰川流域一级编码First_code,所在流域中文名称name,所在流域英文名称Ename,冰川斑块周长Peremeter(km),斑块中心点X坐标(decimal degree), 斑块中心点Y坐标(decimal degree)。 格网单元:30m 数据的投影方式:Albers等积圆锥投影。 数据加工方法:基于150景Landsat7 TM(ETM+)卫星数据,校正、镶嵌为假彩色合成影像(TM/ETM+, RGB:543),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth 同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川矢量数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137 原始遥感资料数据精度:30m。 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 加工后数据精度:TPG2001总体数据误差在3.8%。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302),第二次青藏高原综合科学考察研究资助(2019QZKK0202),中国科学院“十三五”信息化建设专项资助(XXH13505-06),国家自然科学基金项目(41530748, 91747201)。
叶庆华, 吴玉伟
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件