该数据集记录了青海省1980~2016年全社会固定资产投资情况。数据来自统计年鉴: 《青海社会经济统计年鉴》和《青海统计年鉴》,从青海统计年鉴中摘录,精度同数据所摘取的统计年鉴。 数据表共有11个字段 字段1:年份 解释:数据的年份 字段2:总计 解释:固定资产投资总计 亿元 字段3:国有经济 解释:国有经济固定资产投资额 亿元 字段4:集体经济 解释:集体经济固定资产投资额 亿元 字段5:私营经济 解释:私营经济固定资产投资额 亿元 字段6:其他经济 解释:其他经济固定资产投资额 亿元 字段7:总增长 解释:固定资产投资总增长 % 字段8:国有增长 解释:国有固定资产投资增长 % 字段9:集体增长 解释:集体固定资产投资增长 % 字段10:私有增长 解释:私有固定资产投资增长 % 字段11:其他增长 解释:其他固定资产投资增长 %
青海省统计局, 青海省统计局
数据集综合了藏北高原大气、水文和土壤的多站点长期监测项目,包含了藏北高原青藏公路/铁路沿线9个站点(D66,NewD66,沱沱河,D105,D110,安多,MS3478/NPAM,那曲布交,MS3608)多层或单层大气基本要素(风、温、湿、压和降雨/雪等),地面辐射各分量及多层土壤温、湿和热流等观测资料。 数据集通过架设在野外的自动气象站(AWS)、大气边界层塔(PBL)所获得的监测数据组成。所使用的温湿度和气压传感器由芬兰的Vaisala公司生产;风速风向传感器由美国的MetOne公司生产;辐射传感器由美国的APPLEY公司和日本的EKO公司生产;气体分析仪由美国的Licor公司生产;土壤含水量、超声风速仪和数据采集器等由美国的CAMPBELL公司生产。定期(每年2-3次)由专业人员对观测系统进行维护,对传感器进行标定和更换,对采集的数据进行下载和整编。 数据集加工方法为原始数据经过质量控制后形成时间连续序列。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。 数据包含如下观测指标: 空气温度,单位:℃,精度:0.05℃; 空气相对湿度,单位:%,精度:2%; 风速,单位:m/s,精度:0.1m/s; 气压,单位:hPa,精度:0.5hPa; 风向,单位:°,精度:4°; 降水,单位:mm,精度:0.05mm; 辐射,单位:W/m²,精度:5%; 土壤热流,单位:W/m²,精度:2%; 土壤温度,单位:℃,精度:0.2℃; 土壤体积含水量,单位:v/v%,精度:2%。
胡泽勇
第三极地区降水资料库包含7个指标:降水量(Precipitation),订正后降水 (Corrected Precipitation),订正系数(Correction Factor),风速损失(Wind-induced loss),蒸发损失(Evaporation loss),湿润损失(Wetting loss),微降水(Trace precipitation)。涵盖了第三极地区台站观测降水数据,同时包含了订正后的降水数据、订正系数,以及由风速、蒸发、湿润等引起的降水损失、微量降水等。 (1)中国境内观测降水数据来自于中国气象局-国家气象信息中心(http://data.cma.gov.cn/site/index.html) (2)国外观测降水数据来自NCDC国际气候数据中心-NOAA卫星信息服务中心(http://www7.ncdc.noaa.gov/CDO/country),巴基斯坦气象局,尼泊尔气象局等。 原始数据已经由气象业务部门经过严格的质量控制,并已经在相关学术期刊发表。因各个国家气象数据集的规范不同,订正前需要统一气象要素单位,即气温、风速、降水等单位各自统一为℃、m/s、mm。 该数据集包含2个表格: 第三极地区中国境内降水日资料; 第三极地区境外降水日资料。 表格1,2包含如下字段:台站编号,日期,观测降水,订正后降水,订正系数,风速损失,蒸发损失,湿润损失,微降水。
张寅生
本数据集包括青海果洛军牧场草甸碳通量站观测的气象数据,时间范围为2005-2009年,数据的时间分辨率为1天。气象和碳通量数据观测方法:采用涡度相关观测仪器,均为自动记录;生物量观测方法:收获法,置于60度烘箱中48小时称重。碳通量和气象数据均为仪器自动记录,并进行了人工检查。数据观测过程中,仪器的操作、观测对象的选择等严格按照专业要求进行。数据可以用在植物叶片光合参数模拟和生产力估算中。 数据包含如下观测指标: 气温 ℃ 降水量 mm 风速 m/s 5cm处土壤温度 ℃ 光合有效辐射 umol/m²s 总辐射 W/m²
赵新全
该数据集包含了2016年9月份在玛多县高寒草原和高寒草甸的样方调查数据。样方大小为50cm×50cm。调查内容包括覆盖度、物种名称、植被高度、生物量(干重和鲜重)、样方的经纬度坐标、坡度、坡向、坡位、土壤类型、植被类型、地表特征(凋落物、砾石、风蚀、水蚀、盐碱斑等)、利用方式、利用强度等。
李飞, 张志军, 张志军
基于青藏工程走廊现有的15个活动层厚度监测场天然孔数据资料,运用GIPL2.0冻土模型模拟了青藏工程走廊的活动层厚度现状分布图。该模型需要合成时间序列的温度数据集,按照时间跨度分为两个阶段,分别是1980-2009和2010-2015,第一阶段的温度数据来自于中国气象驱动数据集(http://dam.itpcas.ac.cn/rs/?q=data#CMFD_0.1),第二阶段的数据应用空间分变率为1km的MODIS地表温度产品(MOD11A1/A2, MYD11A1/A2)。此外,模型需要的土质类型数据来自于分辨率为1公里的中国土壤数据库(V1.1),同时还考虑了地貌,基于实测的土壤热物理参数以及土地覆盖类型等将研究区域归为88类进行了模拟。 对模拟结果和现场实测数据进行了对比,结果显示具有较好的一致性,相关系数达到0.75。在高山地区,活动层平均厚度小于2.0 m,然而在河谷地带,活动层平均厚度大于4.0 m,在高地平原区,活动层厚度通常在3.0 m -4.0 m之间。
牛富俊, 尹国安
地表温度作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气候学、水文学和生态学等的研究中。 在冻土研究中,气候是冻土存在和发展的决定性因素之一,其中地表温度是影响冻土分布的主要气候因子,其影响冻土发生发育以及分布,是冻土建模的上边界条件,对寒区水文过程的研究具有重要的意义。 数据集基于青藏高原工程走廊DEM及观测站资料分析了青藏高原2000-2014地表温度变化趋势。利用MODIS上下午星Terra和Aqua的地表温度数据产品MOD11A1/A2、MYD11A1/A2,基于影像时空信息对云覆盖像元下地表温度信息进行了重建,采用昆仑山(湿地、草原)、北麓河(草原、草甸)、开心岭(草甸、草原)、唐古拉山(草甸、湿地)8个站点对重建信息及地表温度代表性问题进行了分析,通过相关性系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)和平均偏差(MBE)验证指标得出:(1)基于时空信息的MODIS云覆盖像元下地表温度重建精度较高;(2)上下午星Terra和Aqua四次观测加权平均代表性最好。 基于MODIS地表温度信息重建及代表性问题的分析,获取了青藏高原及其工程走廊带2000-2010年年均MODIS地表温度数据。 可以看出2000-2010年地表温度也在经历着波动的增温趋势,这与青藏高原以及青藏工程走廊多年冻土段气候变化保持基本相同的变化趋势。
牛富俊, 尹国安
该数据集是青藏工程走廊多年冻土段三个气象站近50年来的年平均气温和降雨量变化趋势。从记录数据可以看到,年平均气温整体在经历着缓慢的升高过程。五道梁和沱沱河在过去的56年内年平均气温的变化有很好的相关性(r2=0.83)。在1957年,五道梁、沱沱河年平均气温分别为-6.6和-5.1℃,到2012年,两站的气温分别为-4.6和-3.1℃,总的增温大约是2℃左右,年平均增温率为0.03-0.04℃。五道梁和安多在过去的47年内年平均气温的变化也有很好的相关性(r2=0.84)。在1966年,安多年平均气温为-3.0℃,到2012年,气温增加到了-1.8℃,总的增温大约是1.2℃,年平均增温为0.02-0.03℃。年平均气温的增加在五道梁和沱沱河略快于安多。 然而,从降雨量来看,降雨的变化比气温变化更加波动。五道梁和沱沱河在过去56年内年降雨量的变化相关性较差(r2=0.60)。在1957年,五道梁、沱沱河年降雨量分别为302和309mm,到2012年,两站的年降雨量分别为426和332mm,五道梁有124mm的降雨增加,年降雨量增加率约为2mm,沱沱河年降雨量增加率仅为0.4mm。五道梁和安多在过去的47年内年降雨量的变化相关性也较差(r2=0.35)。在1966和2012年,安多年平降雨量分别为354和404mm,总的增加大约是50mm,年平均增加率为1mm。年降雨量的增加在五道梁是最快的。 三个气象站代表了青藏工程走廊多年冻土段的气候变化情况。从整体的气温和降雨量的变化趋势来看,过去50年,走廊北部和中部的气温增速较快,超过全球平均0.02℃/a的水平(IPCC)。北部的降雨量增加也较明显,尤其是五道梁气象站的降雨增速非常明显。气温变暖和降雨增加都对加速多年冻土的空间变化产生较大影响,是导致青藏高原多年冻土退化的主导因素。
牛富俊, 林战举, 尹国安
应用GIPL2.0冻土模型模拟了青藏工程走廊的平均地温分布图。该模型需要合成时间序列的温度数据集,按照时间跨度为2010-2015,数据应用空间分辨率为1km的MODIS地表温度产品(MOD11A1/A2, MYD11A1/A2)。此外,模型需要的土质类型数据来自于分辨率为1公里的中国土壤数据库(V1.1),同时还考虑了地貌,基于实测的土壤热物理参数以及土地覆盖类型等将研究区域归为88类进行了模拟。 对年平均地温模拟结果和现场实测数据进行了对比,结果显示具有较好的一致性。模拟结论得出在高山区域,如昆仑山,唐古拉山,年平均地温小于-2.0 °C;而在较高的河谷地带,如坨坨河的年平均地温高于0 °C;对于高平原地区(如北麓河盆地和五道梁盆地)的年平均地温较高在-2.0 °C ~ 0 °C范围内。如果以年平均地温小于0 °C为多年冻土存在与否的阈值,则青藏工程走廊的多年冻土占整个区域的78.9%。同时根据地温的不同将青藏工程走廊的冻土类型分为低温稳定多年冻土、低温基本稳定多年冻土、高温不稳定多年冻土和高温极不稳定多年冻土。
牛富俊, 尹国安
以中国科学院大气物理研究所东亚区域气候-环境重点实验室发展具有独立版权的区域集成环境系统模式RIEMS 2.0为基础,其中RIEMS 2.0区域气候模式是以美国大气研究中心和美国滨州大学发展的中尺度模式(MM5)为非静力动力框架,耦合了一些研究气候所需的物理过程方案。这些过程包括生物圈-大气圈输送方案、采用FC80闭合方案的Grell积云参数化方案、MRF行星边界条件和修改的CCM3辐射方等,采用黑河流域流域观测和遥感数据对该模式中的重要参数进行重新率定,植被资料采用黑河流域数据清单中2000年土地利用数据和黑河流域30sec DEM数据,建立的起来适合黑河流域生态-水文过程研究的区域气候模式。 驱动场:ERA-INTERIM再分析资料 空间范围:模拟区域的网格中心位于(40.30N,99.50E), 水平分辨率为3 km,模式的模拟网格点数为161(经向)X 201(纬向)。 投影方式:LAMBERT正形投影,两个标准纬度为30N 和60N。 时间范围:2011年1月1日-2016年12月31日,时间间隔为6小时 文件内容说明:采用grads无格式月存储。除最高、最低温度为日尺度以外,其他变量都是6小时数据。 可以采用MATLAB进行读取,可见tmax_erain_xiong_heihe.m文件说明。 黑河流域数据说明: 1) Anemometer west wind(m/s) 简称usurf 2) Anemometer south wind(m/s) 简称vsurf 3) Anemometer temperature (deg K) 简称tsurf 4)maximal temperature (deg K) 简称tmax 5) minimal temperature (deg K) 简称tmin 6) Anemom specific humidity (g/kg) 简称qsurf 7) Accumulated precipitation (mm/hr) 简称precip 8) Accumulated evaporation (mm/hr) 简称evap 9) Accumulated sensible heat (watts/m**2/hr) 简称sensible 10) Accumulated net infrared radiation (watts/m**2/hr) 简称netrad 文件名定义: 简称-erain-xiong.年月
熊喆
CMADS(The China Meteorological Assimilation Driving Datasets for the SWAT model)土壤温度分量(以下简称CMADS-ST)利用中国大气同化系统(China Meteorological Administration Land Data Assimilation System [CLDAS])强迫公用陆面模式 (Community Land model 3.5 [CLM3.5]), 进行陆面数值模拟实验,循环10次进行spin-up模拟,得到基本稳定的模式初始场,获取高时空分辨率的土壤温度数据集,最终利用数据模式分层提取、质量控制、循环嵌套、重采样,及双线性插值等多种技术手段最终建立。 CMADS-ST系列数据集空间覆盖整个东亚(0°N-65°N, 60°E-160°E), 空间分辨率分别为CMADS-ST V1.0版本: 1/3°, CMADS-ST V1.1版本: 1/4°, CMADS-ST V1.2版本: 1/8°及CMADS-ST V1.3版本: 1/16°, 以上分辨率均为逐日(CLM3.5模式输出土壤温度分量基本分辨率为1/16°,保证了CMADS-ST数据集最高分辨率达1/16°),时间尺度为2009-2013年。本页发布的数据集为CMADS-ST V1.0版本数据集(空间分辨率:1/3°。时间分辨率:逐日。空间覆盖范围:东亚(0°N-65°N,60°E-160°E)。站点数量:58500站。提供要素:日平均10层土壤温度 (节点层次深度依次为, 第一层:0.00710063521m, 第二层:0.0279249996m, 第三层:0.0622585751m, 第四层:0.118865065m, 第五层:0.2121934m, 第六层:0.3660658m, 第七层:0.619758487m, 第八层:1.03802705m, 第九层:1.72763526m, 第十层:2.8646071m)。提供数据格式: txt。 CMADS-ST V1.0 土壤温度数据集路径为: CMADS-ST-V1.0\2009\layer1 至CMADS-ST V1.0\2009\layer10 CMADS-ST-V1.0\2010\layer1 至CMADS-ST V1.0\2010\layer10 CMADS-ST-V1.0\2011\layer1 至CMADS-ST V1.0\2011\layer10 CMADS-ST-V1.0\2012\layer1 至CMADS-ST V1.0\2012\layer10 CMADS-ST-V1.0\2013\layer1 至CMADS-ST V1.0\2013\layer10 CMADS-ST V1.0子集文件路径及文件名说明 其中layer1-layer10\目录下为逐日土壤温度(十层)。分别位于以下目录(以2009年为例): \2009\layer1\ 2009年第一层(0.00710063521m)土壤温度目录 \2009\layer2\ 2009年第二层(0.0279249996m)土壤温度目录 \2009\layer3\ 2009年第三层(0.0622585751m)土壤温度目录 \2009\layer4\ 2009年第四层(0.118865065m)土壤温度目录 \2009\layer5\ 2009年第五层(0.2121934m)土壤温度目录 \2009\layer6\ 2009年第六层(0.3660658m)土壤温度目录 \2009\layer7\ 2009年第七层(0.619758487m)土壤温度目录 \2009\layer8\ 2009年第八层(1.03802705m)土壤温度目录 \2009\layer9\ 2009年第九层(1.72763526m)土壤温度目录 \2009\layer10\ 2009年第十层(2.8646071m)土壤温度目录 CMADS-ST V1.0数据子集命名格式 (以尾站:195-300为例): CMADS_V1.0_SOIL_TMP_L1_195_300.txt 195_300格网站点第一层土壤温度(K) CMADS_V1.0_SOIL_TMP_L2_195_300.txt 195_300格网站点第二层土壤温度(K) CMADS_V1.0_SOIL_TMP_L3_195_300.txt 195_300格网站点第三层土壤温度(K) CMADS_V1.0_SOIL_TMP_L4_195_300.txt 195_300格网站点第四层土壤温度(K) CMADS_V1.0_SOIL_TMP_L5_195_300.txt 195_300格网站点第五层土壤温度(K) CMADS_V1.0_SOIL_TMP_L6_195_300.txt 195_300格网站点第六层土壤温度(K) CMADS_V1.0_SOIL_TMP_L7_195_300.txt 195_300格网站点第七层土壤温度(K) CMADS_V1.0_SOIL_TMP_L8_195_300.txt 195_300格网站点第八层土壤温度(K) CMADS_V1.0_SOIL_TMP_L9_195_300.txt 195_300格网站点第九层土壤温度(K) CMADS_V1.0_SOIL_TMP_L10_195_300.txt 195_300格网站点第十层土壤温度(K)
孟现勇, 王浩
太阳辐射数据为采用国际上通用的太阳辐射表(LI200SZ,LI-COR, Inc., USA)测量获得。本测量数据为总太阳辐射,包括直射和漫反射的太阳辐射,波长范围400-1100nm。测量结果单位为W/m2,在自然采光下典型误差为± 3%(入射角60°以内)。三极不同地点(青藏高原珠峰站和纳木错站,北极Sodankylä 站,南极DomeA站)的数据来源于与站点合作和网站下载等。青藏高原珠峰站和纳木错站数据覆盖时间从2009年到2016年;北极Sodankylä 站数据覆盖时间从2001年到2017年;南极DomeA站数据覆盖时间从2005年到2014年。
白建辉
本数据集是2013年青藏高原冰川数据,使用了148景Landsat8 OLI卫星多光谱遥感数据,结合65景HJ1A/1B遥感数据,时间主要从2012年至2014年,86%来源于2013年,78%Landsat8 OLI数据成像于冬季,而HJ1A/1B数据100%成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容:冰川编号FID_smglac,基于Albers等积圆锥投影计算的冰川面积area_km2,所在流域在我国冰川编目中冰川流域的二级编码code, 所在流域在我国冰川编目中冰川流域一级编码First_code,所在流域中文名称name,所在流域英文名称Ename,冰川斑块周长Peremeter(km),斑块中心点X坐标(decimal degree), 斑块中心点Y坐标(decimal degree)。 数据的投影方式:Albers等积圆锥投影。 格网单元:30m 数据加工方法:基于148景Landsat8 OLI卫星多光谱遥感数据,校正、镶嵌为假彩色合成影像(RGB:654),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth和HJ1A/1B卫星同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137 原始遥感资料数据精度:30m。 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 加工后数据精度:TPG2013总体数据误差在3.9%。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302), 第二次青藏高原综合科学考察研究资助(2019QZKK0202),中国科学院“十三五”信息化建设专项资助(XXH13505-06),国家自然科学基金项目(41530748, 91747201),科技基础性工作专项项目(2013FY111400)。
叶庆华
该土地覆盖类型产品是欧空局气候变化行动第二阶段产品,其空间分辨率为300米,时间覆盖范围为1992-2015. 空间覆盖范围纬向-90~90度,经向-180~180度,坐标系统为地理坐标WGS84.土地覆盖产品该地表覆盖的分类依据联合国粮食农业组织土地覆盖分类系统(LCCS, Land Cover Classification System)。 该数据用于科研目的需要致谢ESA CCI Land Cover project,并且将发表的文章发送给contact@esalandcover-cci.org
徐希燕
本数据集包含从2005年10月1日到2016年12月31日,纳木错台站观测的气温、气压、相对湿度、风速、降水、总辐射等日值。 数据集加工方法为原始数据经过质量控制后形成连续的时间序列。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,剔除了曳点数据和传感器出现故障造成的系统误差。 该数据的服务对象为从事大气物理、大气环境、气候、冰川、冻土等学科科学研究和人才培养的专业人员。主要应用于冰川学、气候学和环境变化、寒区水文过程以及冻土学等学科领域。 测量参数的单位和精度如下: 空气温度,单位:℃,精度:0.1℃; 空气相对湿度,单位:%,精度:0.1%; 风速,单位:m/s,精度:0.1m/s; 风向,单位:°,精度:0.1°; 气压,单位:hPa,精度:0.1hPa; 降水,单位:mm,精度:0.1mm; 总辐射,单位:W/m2,精度:0.1W/m2。
汪远伟, 邬光剑
西藏卡若拉冰川位于西藏自治区山南地区浪卡子县和日喀则地区江孜县交界处,北纬28°54′23.30″~28°56′50.95″,东经90°11′42.21″~90°09′26.23″,属大陆性冰川,平均海拔5042米,是近南北向展布的宁金岗桑峰的组成部分。本数据集在综合中国科学院寒区旱区环境与工程研究所的我国第一次冰川编目数据、地球系统科学数据共享平台的雅鲁藏布江流域冰川2005年1∶10万编目数据、Google Earth遥感影像及野外考察等相关数据的基础上,借助ArcGIS、ENVI等软件,对数据进行波段组合、研究区裁剪、人工目视解译等技术研发完成,最后对所得的数据进行了精度验证。本数据集共包括1972-2017年间的25期冰川矢量数据和面积数据统计表,反映了45年来卡若拉冰川边界变化情况,可以作为青藏高原冰川变化、气候变化等研究的参考数据。
邱玉宝, 傅文学
青藏高原地区积雪的赋存变化较快,高原周边高山区具有冰雪资源丰富。在充分考虑青藏高原的地形和山地积雪特征的情况下,本套数据集采用了AVHRR数据,逐步实现保持积雪分类精度的情况下逐日、十天、每月积雪面积数据产品。本数据包含青藏高原2007-2015年每天/10天/每月积雪面积数据,数据平均精度可达0.92。可为青藏高原地区历史时期积雪变化提供可靠数据。
邱玉宝
本数据集包括2007年1月1日至2017年12月31日藏东南站,大气气温、相对湿度、降水、风速、风向、净辐射、气压等的日平均数据。 该数据服务对象为从事气象、大气环境、生态研究的学生和科研人员。 其中各种气象要素的单位如下:气温℃;降水mm;相对湿度%;风速m/s;风向°;净辐射W/m2;气压hPa;可入肺颗粒物μg/m3。 所有数据均是原始观测数据计算得到的日平均值。严格按照仪器操作规范进行观测和数据采集,并已经在相关学术期刊发表;加工过程中剔除了一些明显误差数据,缺失数据用空值。 2015年由于台站观测探头老化问题,风速数据只保留后8个月数据。
罗伦
本数据集包含珠穆朗玛大气与环境综合观测研究站,2005-2016年观测的气温、气压、相对湿度、风速、降水、总辐射、P2.5浓度等日平均值。 数据服务对象为从事青藏高原气象研究的学生和科研人员。 其中降水数据是人工雨量桶观测,蒸发数据为Φ20mm蒸发皿观测,其它均为半小时的观测值处理后得到的日均值。 所有数据严格按照仪器操作规范进行观测和采集,在加工生成数据时,剔除了一些明显的误差数据。
马耀明
1)该套数据集为来自美国国家环境预报中心(NCEP)和国家大气研究中心(NCAR)联合研制的全球大气再分析数据,是利用观测资料、预报模式和同化系统对全球从1948年到目前的气象资料进行再分析形成的格点资料。数据变量包括地表、近地表(.995sigma层)和不同气压层的多个气象变量,如降水、温度、相对湿度、海平面气压、位势高度、风场和热通量等。 2)覆盖时间为1948年至2018年,其中1948至1957年数据是非高斯格点数据;覆盖范围为全球。空间分辨率为2.5°经纬网格。垂直分层为17个标准气压层,分别为1000、925、850、700、600、500、400、300、250、200、150、100、70、50、30、20、10 hPa,和28 sigma层。部分变量为8层(omega)和12层(humidities);时间分辨率为逐6小时、逐日、逐月和长期逐月平均(1981年至2010年平均)。逐日数据由每日0Z,6Z,12Z和18Z 4个时次值作平均得到的。 3)缺测值为-9.96921e+36f。数据以nc格式存放,文件名为var.time.stat.nc, 每个文件包括经纬度、时间和大气要素变量。 数据的详细情况见数据说明链接http://www.esrl.noaa.gov/pad/data 。
NOAA, NCAR
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件