该数据集包含了2017年1月1日至2017年12月31日期间果洛站的气象观测数据,包括气温(Ta_1_AVG)、相对湿度(RH_1_AVG)、水汽压(Pvapor_1_AVG)、平均风速(WS_AVG)、大气压(P_1)、平均天空长波辐射(DLR_5_AVG)、平均地表长波辐射(ULR_5_AVG)、平均净辐射(Rn_5_AVG)、平均土壤温度(Ts_TCAV_AVG)、土壤含水量(Smoist_AVG)、总降水量(Rain_7_TOT)、天空长波辐射(CG3_down_Avg),地面长波辐射(CGR3_up_Avg)、平均光合有效辐射(Par_Avg)等。时间分辨率为1小时。缺测时刻用-99999填充。
徐世晓, 胡林勇
该数据集包含了2017年8月3日至2017年8月9日期间在曲麻莱、玛多和可可西里的植物群落样方调查数据。主要调查内容为盖度、高度和地上生物量。涵盖了高寒草原、高寒湿地和高寒草甸三种植被类型。记录了样方的经纬度、海拔、总体覆盖度、物种名称及数量、每个物种选三株测量其高度、总的地上生物量、分类别的地上生物量。
胡林勇, 李奇, 胡林勇, 徐世晓, 李奇
本数据集来源于MODIS 005版本和IMS数据集,进行了去云处理后融合的逐日无云积雪面积产品。取值范围:0%-100%。200:积雪;100: 湖冰;25:陆地;37:海洋。空间分辨率为0.005 度(约500m),时间范围是2002年7月5日至2014年12月31日。
郝晓华
基于青藏高原国家气象站站点数据通过PRISM模型插值生成的高原气象要素分布图,主要包括气温和降水。 青藏高原1961-1990月均温分布图(30年平均值): t1960-90_1.e00,t1960-90_2.e00,t1960-90_3.e00,t1960-90_4.e00,t1960-90_5.e00, t1960-90_6.e00,t1960-90_7.e00,t1960-90_8.e00,t1960-90_9.e00,t1960-90_10.e00, t1960-90_11.e00,t1960-90_12.e00 青藏高原1991-2020月均温分布图(30年平均值): t1991-20_1.e00,t1991-20_2.e00,t1991-20_3.e00,t1991-20_4.e00,t1991-20_5.e00, t1991-20_6.e00,t1991-20_7.e00,t1991-20_8.e00,t1991-20_9.e00,t1991-20_10.e00, t1991-20_11.e00,t1991-20_12.e00, 青藏高原1961-1990月降水分布图(30年平均值): p1960-90_1.e00,p1960-90_2.e00,p1960-90_3.e00,p1960-90_4.e00,p1960-90_5.e00, p1960-90_6.e00,p1960-90_7.e00,p1960-90_8.e00,p1960-90_9.e00,p1960-90_10.e00, p1960-90_11.e00,p1960-90_12.e00 青藏高原1991-2020月降水分布图(30年平均值): p1991-2020_1.e00,p1991-2020_2.e00,p1991-2020_3.e00,p1991-2020_4.e00,p1991-2020_5.e00, p1991-2020_6.e00,p1991-2020_7.e00,p1991-2020_8.e00,p1991-2020_9.e00,p1991-2020_10.e00, p1991-2020_11.e00,p1991-2020_12.e00, 数据时间范围分为1961-1990年、1991-2020年。 数据覆盖的空间范围为东经73°~104.95°,北纬26.5°~44.95°,空间分辨率0.05度×0.05度(经度×纬度),大地坐标投影。 名称解释: 月均温:一个月中每天的日平均气温的平均数; 月降水:一个月降水量的总和。 量纲:数据的文件格式为E00文件,DN值为1~12月的月均温平均值(×0.01℃)、月降水平均值(×0.01mm)。 数据类型:整型。 数据精度:0.05度×0.05度(经度×纬度)。 本数据原始来源为两组数据集:1)青藏高原及周边地区128个气象站自建站至2000年的月均温、月降水观测资料;2)青藏高原50×50km网格的HadRM3区域气候情景模拟数据,即1991-2020年下月平均温度、月降水模拟值。 1961-1990年,对源数据集采用PRISM(Parameter elevation Regressions on Independent Slopes Model)插值方法生成网格数据,基于站点数据对插值模型进行调参和验证。1991-2020年,对区域气候情景模拟数据以地形趋势面插值方法降尺度生成网格数据。部分源数据来自GCM模型模拟的结果:GCM模型采用Hadley Centre climate model HadCM2-SUL。 a) Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501-504. b) Johns TC, Carnell RE, Crossley JF et al. (1997) The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Climate Dynamics, 13, 103-134. 对气象数据进行空间插值采用PRISM (Parameter-elevation Regressions on Independent Slopes Model)方法: Daly,C., R.P. Neilson, and D.L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140~158. 因高原地区观测条件艰苦,基础研究数据缺乏,部分地区气象数据有缺失的现象。本数据集经调参和验证,精度尚可,但仅可做为宏观尺度气候研究的参考之用。青藏高原1961-1990月均温分布数据平均相对误差率为8.9%,青藏高原1991-2020月均温分布数据平均相对误差率为9.7%,青藏高原1961-1990月降水分布数据平均相对误差率为20.9%,青藏高原1991-2020月降水分布数据平均相对误差率为22.7%。对部分缺失数据的区域进行了插补,对明显错误的个别数值进行了修改。
周才平
该数据集是基于GIMMS 最新版本的NDVI数据集GIMMS3g version 1.0估算的三江源地区去的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。分别用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为1982年至2015年,空间分辨率为8km。
王旭峰
该数据集包含了2016年至2017年之间在三江源地区的珍稀动物调查数据,记录了调查点的经纬度、样线长度、动物发现的时间、动物名称、数量、出现的位置、栖息地类型、所属科等。
胡林勇, 张同作, 张同作, 徐世晓
本数据包含两个数据文件,GLOBELAND30 TILES(原始数据)和TIBET_ GLOBELAND30_MOSAIC(镶嵌数据)。 原始数据下载自全球地表覆盖数据网站(GlobalLand3)(http://www.globallandcover.com),范围涵盖青藏高原及周边地区。原始数据分幅存储,为了便于用户使用数据,在分幅数据的基础上,我们使用Erdas软件对原始数据进行了拼接镶嵌。 全球地表覆盖数据(GlobalLand30)是国家863计划重点项目“全球地表覆盖遥感制图与关键技术研究”的科研成果,该数据利用美国陆地卫星影像(TM5、ETM+)和中国环境减灾卫星(HJ-1)影像数据,采用基于像素分类-对象提取-知识检核的综合方法提取而成。数据包括耕地、森林、草地、灌木、湿地、水体、苔原、人造覆盖、裸地、冰川和永久积雪10个一级地表覆盖类型,没有进行二级类型提取。在准确度评估方面,评估九种类型和超过150,000个测试样品。GlobeLand30-2010的整体精度达到80.33%。Kappa指标为0.75。 GlobeLand30数据采用WGS84坐标系,UTM投影,6度分带,参考椭球为WGS 84椭球。根据不同的纬度情况,采用2种分幅方式进行数据组织。在南北纬60°区域内,按照5°(纬度)×6°(经度)大小进行分幅;在南北纬60°至80°区域内,按照5°(纬度)×12°(经度)大小进行分幅,按照奇数6°带的中央经线进行投影。 GLOBELAND30 TILES:原始数据保留数据原貌,未进行处理。 TIBET_ GLOBELAND30_MOSAIC:使用erdas软件对原始数据进行镶嵌,参数设置使用默认值原始数据保留数据原貌,精度同下载网站。
陈军
数据集综合了纳木错多圈层综合观测研究站、珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站的大气、水文和土壤的长期监测数据。数据有三种分辨率,包括0.1秒、10分钟、30分钟、24小时不等。 野外的大气边界层塔(PBL)所使用的温湿度和气压传感器由芬兰的Vaisala公司生产,风速风向传感器由美国的MetOne公司生产,辐射传感器由美国的APPLEY公司和日本的EKO公司生产,气体分析仪由美国的Licor公司生产,土壤含水量、超声风速仪和数据采集器等由美国的CAMPBELL公司生产。定期(每年2-3次)由专业人员对观测系统进行维护,对传感器进行标定和更换,对采集的数据进行下载和整编,满足国家气象局和世界气象组织(WMO)的气象观测规范。 数据集加工方法为原始数据经过质量控制后形成时间连续序列,质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。
马耀明
本数据集包含了雅鲁藏布江主要水文站径流年际变化特征值(多年平均径流量,年极值比,离差系数等),可用于研究雅鲁藏布江水文特征分析。原始数据为国家水文站数据,质量要求同国家相关标准。 空间范围:雅鲁藏布江流域干流拉孜、奴各沙、羊村、奴下等四个水文站。 本数据表共有五个字段 字段1:站名 字段2:多年平均径流量 字段3:年极值比 字段4:离差系数 字段5:资料系列长度
姚治君
该数据集包含昆莎冰川末端观测点的气温、降水、相对湿度、风速、风向等日值。 观测时间从2015年10月3日至2017年9月19日。利用自动气象站(Onset公司),每2小时记录一条数据。 原始数据经过质量控制后形成连续时间序列。通过计算得到每日均值指标数据。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度。质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。 数据以excel文件存储。
张寅生
本数据集包含自1982年至2006年基于生态学模式与遥感数据计算青藏高原植被净初级生产力(Net Primary Productivity,NPP)的结果。 基于遥感Advanced Very High Resolution Radiometer(AVHRR)数据和Carnegie-Ames-Stanford Approach(CASA)模型生成的青藏高原生态系统NPP(1982-2006),基于第二次土壤普查数据生成的土壤碳含量,以及基于High Resolution Biosphere Model(HRBM)模型生成的生物量碳数据。 青藏高原森林生态系统NPP(1982-2006年): npp_forest82.e00,npp_forest83.e00,npp_forest84.e00,npp_forest85.e00,npp_forest86.e00, npp_forest87.e00,npp_forest88.e00,npp_forest89.e00,npp_forest90.e00,npp_forest91.e00, npp_forest92.e00,npp_forest93.e00,npp_forest94.e00,npp_forest95.e00,npp_forest96.e00, npp_forest97.e00,npp_forest98.e00,npp_forest99.e00,npp_forest00.e00,npp_forest01.e00, npp_forest02.e00,npp_forest03.e00,npp_forest04.e00,npp_forest05.e00,npp_forest06.e00 青藏高原草地生态系统NPP(1982-2006年): npp_grass82.e00,npp_grass83.e00,npp_grass84.e00,npp_grass85.e00,npp_grass86.e00, npp_grass87.e00,npp_grass88.e00,npp_grass89.e00,npp_grass90.e00,npp_grass91.e00, npp_grass92.e00,npp_grass93.e00,npp_grass94.e00,npp_grass95.e00,npp_grass96.e00, npp_grass97.e00,npp_grass98.e00,npp_grass99.e00,npp_grass00.e00,npp_grass01.e00, npp_grass02.e00,npp_grass03.e00,npp_grass04.e00,npp_grass05.e00,npp_grass06.e00 青藏高原生物量碳、土壤碳: Biomass.e00,Socd.e00 土壤碳含量数据(Socd)是参考全国第二次土壤普查的数据与《中国1:100万土壤图》按土壤亚类插值生成。 NPP数据来自CASA模型与AVHRR数据模拟生成: Potter CS, Randerson JT, Field CB et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7: 811–841. 生物量碳数据来自HRBM模型模拟生成: McGuire AD, Sitch S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 2001, 15 (1), 183-206. 原始资料主要是遥感数据和野外观测数据。精度较好;生产过程中与野外实测数据进行的验证和调参,是模拟结果尽量与野外实测数据保持在可接受的误差范围内;NPP数据与野外实测数据的验证结果表明,误差保持在15%的范围内。 空间分辨率0.05度×0.05度(经度×纬度)。
周才平
本数据集包含了青藏高原主要城市与县1970-2006年牲畜数量变化序列数据,用于研究青藏高原社会经济变化。 数据表共有十个字段 字段1:年 解释:数据的年份 字段2:省 解释:所属的省份 字段3:市/州 解释:所属的市或者州 字段4:县 解释:县的名称 字段5:大牲畜(万头) 解释:牛、马、骡、驴、骆驼等大牲畜的数量 字段6:牛群(万头) 解释:牛的数量 字段7:马属动物(万头)解释:马、骡、驴等马属动物的数量 字段8:马(万头) 解释:马的数量 字段9:羊(万头) 解释:羊的数量 字段10:数据来源 解释:数据摘取的来源 数据来自统计年鉴与县志,部分清单如下: [1] 甘肃年鉴编委会. 甘肃年鉴[J]. 北京:中国统计出版社,1984,1988-2009 [2] 云南省统计局. 云南统计年鉴[J]. 北京:中国统计出版社,1988-2009 [3] 四川省统计局,四川调查总队. 四川统计年鉴[J]. 北京:中国统计出版社,1987-1991,1996-2009 [4] 新疆维吾尔自治区统计局. 新疆统计年鉴[J]. 北京:中国统计出版社,1989-1996,1998-2009 [5] 西藏自治区统计局. 西藏统计年鉴[J]. 北京:中国统计出版社,1986-2009 [6] 青海省统计局. 青海统计年鉴[J]. 北京:中国统计出版社,1986-1994,1996-2008. [7] 互助土族自治县志编纂委员会. 互助土族自治县志[J]. 青海:青海人民出版社,1993 [8] 海晏县志编纂委员会. 海晏县志[J]. 甘肃:甘肃文化出版社,1994 [9] 门源县志编纂委员会. 门源县志[J]. 甘肃:甘肃人民出版社,1993 [10] 贵南县志编纂委员会. 贵南县志[J]. 陕西:三秦出版社,1996 [11] 贵德县志编纂委员会. 贵德县志[J]. 陕西:陕西人民出版社,1995 [12] 尖扎县志编纂委员会. 尖扎县志[J]. 甘肃:甘肃人民出版社,2003 [13] 达日县志编纂委员会. 达日县志[J]. 陕西:陕西人民出版社,1993 [14] 格尔木市志编纂委员会. 格尔木市志[J]. 北京:方志出版社,2005 [15] 德令哈市志编纂委员会. 德令哈市志[J]. 北京:方志出版社,2004 [16] 天峻县志编纂委员会. 天峻县志[J]. 甘肃:甘肃文化出版社,1995 [17] 乃东县志编纂委员会. 乃东县志[J]. 北京:中国藏学出版社,2006 [18] 古浪县志编纂委员会. 古浪县志[J]. 甘肃:甘肃人民出版社,1996 [19] 阿克塞哈萨克族自治县志编纂委员会. 阿克塞哈萨克族自治县志[J]. 甘肃:甘肃人民出版社,1993 [20] 岷县志编纂委员会. 岷县志[J]. 甘肃:甘肃人民出版社,1995 [21] 宕昌县志编纂委员会. 宕昌县志[J]. 甘肃:甘肃文化出版社,1995 [22] 宕昌县志编纂委员会. 宕昌县志(续编)(1985-2005)[J]. 甘肃:甘肃文化出版社,2006 [23] 文县志编纂委员会. 文县志[J]. 甘肃:甘肃文化出版社,1997 [24] 康乐县志编纂委员会. 康乐县志[J]. 上海:三联书店. 1995 [25] 积石山(保安族 东乡族 撒拉族)自治县志编纂委员会. 积石山(保安族 东乡族 撒拉族)自治县志[J],甘肃:甘肃文化出版社,1998 [26] 碌曲县志编纂委员会. 碌曲县志[J]. 甘肃:甘肃人民出版社,2006 [27] 舟曲县志编纂委员会. 舟曲县志[J]. 上海:三联书店. 1996 [28] 夏河县志编纂委员会. 夏河县志[J]. 甘肃:甘肃文化出版社,1999 [29] 卓尼县志编纂委员会. 卓尼县志[J]. 甘肃:甘肃民族出版社,1994 [30] 迭部县志编纂委员会. 迭部县志[J]. 甘肃:兰州大学出版社,1998 [31] 彭县志编纂委员会. 彭县志[J]. 四川:四川人民,1989 [32] 灌县志编纂委员会. 灌县志[J]. 四川:四川人民出版社,1991 [33] 温江县志编纂委员会. 温江县志[J]. 四川:四川人民出版社,1990 [34] 什邡县志编纂委员会. 什邡县志[J]. 四川:四川大学出版社,1988 [35] 天全县志编纂委员会. 天全县志[J]. 四川:四川科学技术出版社,1997 [36] 石棉县志编纂委员会. 石棉县志[J]. 四川:四川辞书出版社,1999 [37] 芦山县志编纂委员会. 芦山县志[J]. 四川:方志出版社,2000 [38] 红原县志编纂委员会. 红原县志[J]. 四川:四川人民出版社,1996 [39] 汶川县志编纂委员会. 汶川县志[J]. 四川:巴蜀书社,2007 [40] 得荣县志编纂委员会. 得荣县志[J]. 四川:四川大学,2000 [41] 白玉县志编纂委员会. 白玉县志[J]. 四川:四川大学出版社,1996 [42] 巴塘县志编纂委员会. 巴塘县志[J]. 四川:四川民族出版社,1993 [43] 九龙县志编纂委员会. 九龙县志续篇(1986-2000)[J]. 四川:四川科学技术出版社,2007 [44] 贡山独龙族怒族自治县志编纂委员会. 贡山独龙族怒族自治县志[J]. 北京:民族出版社,2006 [45] 泸水县志编纂委员会. 泸水县志[J]. 云南:云南人民出版社,1995 [46] 德钦县志编纂委员会. 德钦县志[J]. 云南:云南民族,1997 [47] 于田县志编纂委员会. 于田县志[J]. 新疆:新疆人民出版社,2006 [48] 策勒县志编纂委员会. 策勒县志[J]. 新疆:新疆人民出版社,2005 [49] 和田县志编纂委员会. 和田县志[J]. 新疆:新疆人民出版社,2006 [50] 新疆且末县地方志编纂委员会. 且末县志[J]. 新疆:新疆人民出版社,1996 [51] 新疆莎车县志编纂委员会. 莎车县志[J]. 新疆:新疆人民出版社,1996 [52] 叶城县志编纂委员会. 叶城县志[J]. 新疆:新疆人民出版社,1999 [53] 新疆阿克陶县地方志编纂委员会. 阿克陶县志[J]. 新疆:新疆人民出版社,1996 [54] 新疆乌恰县地方志编纂委员会. 乌恰县志[J]. 新疆:新疆人民出版社,1995
国家统计局
青藏高原湖泊水位观测数据集包含扎日南木错,巴木错,达瓦错,达则错和蓬错湖泊的水位日变化数据。 湖水水位通过安装在湖岸边的HOBO水位计(U20-001-01)观测,再通过安装在岸边的气压计或附近气象站气压数据进行校正,然后得到真实的水位变化。精度小于0.5cm。 数据集包含以下内容: 2010-2017年扎日南木错湖水水位日变化数据; 2013-2017年巴木错湖水水位日变化数据; 2013-2017年达瓦错湖水水位日变化数据; 2013-2017年达则错湖水水位日变化数据; 2013-2017年蓬错湖水水位日变化数据。 水位,单位:m。
类延斌
青藏高原冰芯-积雪黑碳含量数据集包括5个表:1 Xu et al. 2006 AG,2 Xu et al. 2009 PNAS_Conc,3 Xu et al. 2009 PNAS_flux,4 Xu et al. 2012 ERL,5 Wang et al. 2015 ACP。 数据采集地点包括煤矿冰川、冬克玛底、枪勇、抗物热、纳木那尼、慕士塔格、绒布、唐古拉山、宁金岗桑、左丘普、天山乌鲁木齐河源1号等冰川,采集地点经纬度,高程等信息在数据中均有标注。 数据主要指标为:地点、时间、有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)、黑碳(black carbon,BC)含量和通量。 地点:经纬度 时间:年份或日期 OC:有机碳 EC:元素碳 BC:黑碳 Conc.:含量,单位:ng g-1 Flux:通量,单位:mg m-2a-1 数据来自课题: ①国家重点基础研究发展计划(973计划):全球变化敏感因子的时空特性与遥感模式化;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:科技部 ②国家重点基础研究项目:青藏高原形成演化对全球变化的响应与适应对策;负责人:姚檀栋单位:中国科学院青藏高原研究所资助者:科技部 ③国家自然科学基金面上项目:青藏高原雪冰中高分辨率碳黑记录研究;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ④国家自然科学基金面上项目:青藏高原冰芯包裹气体中气候环境信息的提取;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ⑤国家自然科学基金杰出青年基金项目:青藏高原雪冰-大气化学与环境变化;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ⑥国家自然科学基金青年基金项目:藏东南冰芯近百年来南亚人类活动气溶胶排放与燃烧得变化研究;负责人:王茉单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 观测方法:两步加热法、热/光学碳分析方法和单颗粒黑碳气溶胶光度计。
徐柏青
青藏高原混合土壤水分数据产品是利用了遥感观测、原位测量和模型模拟技术。原位土壤水分(SM)观测结合了青藏高原气候带的分类,用于在高原尺度上产生原位测量的SM气候学。使用产生的青藏高原尺度原位SM气候学来缩放模型模拟的SM数据,其随后用于缩放SM卫星观测。然后通过应用三重配置和最小二乘法来客观地混合气候学尺度的卫星和模型模拟的SM。最终的混合SM可以复制不同气候区的SM动力学,从亚湿润地区到青藏高原的半干旱和干旱地区。 - 时间分辨率:天,从01/05/2008开始 - 空间分辨率:0.25°×0.25° - 数据集尺寸:61×121×975 - 单位:cm^3 cm^-3 数据质量开放评估。
Yijian Zeng
将冰湖划分为冰面湖、与冰川末端相连和非相连湖泊等三种类型。在分类的基础上,研究第三极地区各流域冰湖的数量与面积、不同大小面积变化幅度、与冰川距离远近、有冰川融水径流补给与无冰川融水径流补给冰湖面积的变化差异以及冰湖面积随海拔梯度变化特征等内容。 数据源:Landsat TM/ETM+ 1990,2000,2010。 数据通过目视解译,包括面积大于0.003平方公里的冰湖数据,结合原始影像与Google Earth检查编辑。 数据应用于第三极地区冰湖变化与冰湖溃决洪水( GLOF) 评估。 数据类型:矢量。 投影坐标系:Albers Conical Equal Area。
张国庆
该数据集是玛多地区2016年7月、8月、9月的植被指数(NDVI),基于高分一号的多光谱数据计算得到,空间分辨率为16m。对高分一号数据进行镶嵌、转投影、裁切等处理,然后在7月、8月、9月中每个月进行最大化合成。
李飞, 张志军
Randolph冰川目录(Randolph Glacier Inventory,RGI)是GLIMS(Global Land Ice Measurements from Space)发布的全球冰川轮廓的完整目录,目前共发布6个版本:2012年2月发布1.0,2012年6月发布2.0,2013年4月发布3.0,2014年12月发布4.0,2015年7月发布5.0,2017年7月发布6.0。本数据集包括6.0,5.0,4.0和3.2(修正版,2013年8月)共四个版本。 数据按照不同地区进行组织,每个地区包括一个shape文件(.shp文件及其相应的.dbf、.prj和.shx等文件),一个测高数据的.csv文件,每条冰川包含一条记录。 数据来源于GLIMS: Global Land Ice Measurements from Space(http://www.glims.org/RGI/) 数据质量检查包括几何、拓扑和属性检查,包括: 1) 所有多边形都使用ArcGIS Repair Geometry工具进行检查; 2) 删除了小于0.01平方公里的冰川; 3) 拓扑使用Does Not Overlap规则进行检查; 4) 属性表利用Fortran子程序和Python脚本进行数据质量检查。
Global Land Ice Measurements from Space(GLIMS)
本数据集为基于Landsat卫星影像获取的喜马拉雅中段波曲流域1976、1991、2000、2010年四期冰川、冰湖的矢量数据。 数据源来自Landsat遥感影像 1976:LM21510411975306AAA05、LM21510401976355AAA04 1991:LT41410401991334XXX02、LT41410411991334XXX02 2000:LE71410402000279SGS00、LE71400412000304SGS00、LE71410402000327EDC00、LE71410412000327EDC00 2010:LT51400412009288KHC00、LT51410402009295KHC00、LT51410412009311KHC00、LT51410402011237KHC00。 从各期遥感影像上人工提取冰川、冰湖边界。 冰川、冰湖边界提取误差估计为0.5个像元。 数据文件: Glacial_1976:1976年冰川矢量数据 Glacial_1991:1991年冰川矢量数据 Glacial_2000:2000年冰川矢量数据 Glacial_2010:2010年冰川矢量数据 Glacial_Lake_1976:1976年冰湖矢量数据 Glacial_Lake_1991:1991年冰湖矢量数据 Glacial_Lake_2000:2000年冰湖矢量数据 Glacial_Lake_2010:2010年冰湖矢量数据 冰湖矢量数据字段包括: 编号、名字、经纬度、海拔、面积、朝向、冰湖类型、长度、宽度、与冰川的距离
王伟财
青藏高原东北部1957-2009年0.25度气候数据集,包含降水、最高和最低气温、风速四个气象要素值,时间分辨率为逐日。 数据集包含2400个文本文件,每个文件里有降水(第一列)、最高(第二列)和最低(第三列)气温、风速(第四列)。每个文件名含有经纬度,每个文件代表相应网格点(0.25*0.25度)的四个气象要素值。 本数据是由高原东北部81个气象站观测资料网格化形成。考虑了气象条件随高程的变化。 网格化方法和步骤如下: 从气象局数据共享网(http://data.cma.cn)下载原始的逐日最高和最低气温、降水、风速。之后对数据进行质量控制。所用的原则为1)去除小于0,大于150mm逐日降水;小于-50°C,大于50°C逐日气温;小于0m/s风速;2)画出年序列降水、气温和风速,检查不正常的逐年变化,并通过台站迁移记录进行质量控制。对有非正常变化,但有台站迁移记录的数据,通过修改台站名称,对数据进行分段,如西宁站(52866)1996年出现不正常气温变化,通过记录发现西宁站在1996年后迁移,因此将1996年前的记录记为虚拟台站52867数据,1996年之后的仍记录为52866站的数据。如果数据出现异常变化,但没有台站迁移记录,则将异常变化的数据剔除,如1975年之前的德令哈站数据。有些台站有迁移记录,但数据没有异常变化,即假定迁移前后的台站仍处于相同的气候环境下,因此台站名称和数据记录没有任何改变。 质量控制后开始内插,其方法为1)计算日平均气温、降水和风速随海拔高度的变化。得出气温随海拔高度递减率为4.3°C/km,其决定系数R2为0.65。暖湿季(5-9月)逐日平均降水量随海拔高度有一个不显著的增加(0.5mm/km,R2为0.1)。冷干季(10-4月)逐日平均降水量不随海拔变化。风速也随海拔高度有一个不显著的增加,其增加率为0.4m/s/km,R2为0.1。气温和风速随海拔的变化率用在整个时间段里,而降水随海拔递增率只用在暖湿季,冷干季递增率为0。2)空间内插时利用Synographic Mapping System (SYMAP,Shepard, 1984)方法。这个方法在内插时考虑台站之间的距离以及周围台站之间的角度以表示台站的密集程度。将距离和角度综合为一个权重,用在内插中。距离近且台站之间的夹角大的台站赋予大权重。3)将台站的经纬度、气象要素值、海拔、随海拔的变化率和权重同时考虑,内插出目标网格的值。内插时最大的搜索范围为周围55个台站,最小的搜索范围为周围4个台站。4)综合暖湿和冷干季节的降水,形成整个时段的降水序列。5)在方法测试期,留出了部分台站以检查网格化后的数据。6)验证通过后,所有的81个台站均用在最终网格化过程,并形成本套数据集。 Shepard, D. S., 1984: Computer Mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G.Gaile and C. Willmot, Eds., Reidel 133-145.
兰措
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件