数据内容:国民经济工业增加值(月度)(2010-2021) 数据来源及加工方法:从世界银行官方网站、新浪网获取2010-2021年第三极(中国地区)工业经济原始数据,通过数据整理、筛选及清洗得到2010-2021年(中国地区)工业经济数据集,数据起始时间为2010年至2021年,Microsoft Excel(xls)格式。 数据质量描述:优良 数据应用成果及前景:作为社会工业经济数据提供有效参考
傅文学
2000-2020年三极地区0.1º气溶胶光学厚度数据集(也称为“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集),结合Merra-2模式数据与MODIS卫星传感器AOD制作,数据覆盖时间从2000年到2020年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁
青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。活动层厚度不仅是研究多年冻土区地面热状态的重要指标,而且是冻土工程建设中需考虑的关键因子。GIPL1.0的核心是Kudryavtesv方法,该模型考虑了雪盖、植被和不同土层的热物理性质,但尹国安等发现相比Kudryavtesv方法,引入TTOP模型后精度更高,因此结合冻结/融化指数对模型做了改进,通过实地监测数据验证发现:活动层厚度模拟误差小于50cm。因此利用改进后的GIPL1.0 模型模拟了青藏工程走廊的活动层厚度,并预测了SSP2-4.5气候变化情景下未来活动层的厚度。
牛富俊
(1)数据内容:1500-2000年年平均的北半球环状模指数和南半球环状模指数;(2)数据来源及加工方法:该数据由作者自主生产,基于PAGES2k代用资料数据集,利用机器学习模型(随机森林、极端随机树、轻量梯度提升机、CatBoost)重建而产生。(3)数据质量描述:该数据集与多个器测数据在器测时段内有较高的一致性,重建效果更好。数据可用于研究多时间尺度(年际、年代际、多年代际)上南北半球主要大气环流的变化规律及机理。
杨佼
基于12套过去千年温度资料(包括2套青藏高原夏季温度格点重建数据集、2条北极温度重建序列、1套北极格点温度重建序列、6套全球温度格点重建数据集,以及1套过去千年全球再分析数据集),利用最优信号提取法重建了过去千年(900–1999 CE)青藏高原和北极夏季年分辨率气温变化序列。青藏高原的选取范围是(27°N–36°N, 77°E–106°E),北极的选取范围是(60°N–90°N)。重建目标是仪器观测数据CRUTEM4v数据集6月至8月夏季平均气温基于1961–1990 CE时段的异常值。数据可用于研究过去千年青藏高原和北极的温度变化规律及机理。
史锋
(1)数据内容:过去200年南极区域海冰范围(最北边界)数据集;(2)数据来源及加工方法:该数据利用6条年分辨率的代用指标(冰芯MSA、积累率等),基于统计模型产生;(3)数据质量描述:年分辨率;包含区域:印度洋-西太平洋(50°–150°E, IndWPac),罗斯海 (160°E–140°W, RS),阿蒙森海(90°–140°W, AS),别林斯高晋海 (50°–90°W, BS),威德尔海 (50°W–20°E, WS);(4)可用于研究南极海冰的年代际演变特征。
杨佼
青藏高原(TP)在春季和夏季作为一个巨大的高架式地表和大气热源,对区域和全球气候和气候具有重要影响。为了探讨TP的热强迫效应,制备了青藏高原感热异常的全球模拟 敏感性试验数据集。 本数据包含三组敏感性试验:(1)全耦合模式CESM1.2.0中春季3-5月高原感热偏强cgcm_lar_mon_3-12-2.nc和高原感热偏弱cgcm_sma_mon_3-12-2.nc的敏感性试验;(2)单独大气环流模式CAM4.0中春季3-5月高原感热偏强cam_lar_mon3-8.nc和高原感热偏弱cam_sma_mon3-8.nc的敏感性试验。 包括:三维风、位势高度、气温、地表温度、比湿、感热通量、潜热通量、降水等常规变量 空间范围:全球模拟结果
段安民
数据为excel文件,文件包括4个表格,表格名称分别为:阿勒泰积雪DOC时间系列、阿勒泰积雪雪坑数据、阿勒泰积雪MAC(吸收截面)和中亚木斯岛冰川BC、OC、DUST数据四个表格。 阿勒泰积雪DOC表格含:样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共七列,47个样品数据。 阿勒泰积雪雪坑表格含:雪坑号、样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共8列,238个样品数据。 阿勒泰积雪MAC表格含:采样时间、MAC和AAE共3列,46个样品数据。 中亚木斯岛冰川BC、OC、DUST数据表格含:code no(样品号)、Latitute(纬度)、Longitude(经度)、/m a.s.l(海拔高度)、snow type(积雪类型)、BC、OC和DUST共8列,按采样时间分析。共105行数据。 缩写解释: DOC:Dissolved Organic Carbon 溶解性有机碳 MAC:mass absorption cross section吸收截面 BC:black Carbon黑碳 DUST:粉尘 OC:有机碳 TN:Total Nitrate (总氮) PPM:ug g-1 (微克每克 ) PPb:ng g-1( 纳克每克)
张玉兰
亚洲高山区是世界第三极,称之为“亚洲水塔”,受气候变暖的影响,冰川持续亏损,深刻改变了冰川水资源的供需关系。为了系统认识冰川对气候变化的响应程度,项目通过冰川物质平衡的敏感性,揭示冰川物质平衡变化与气候因子之间的关系。数据包括两张图:物质平衡对气温的敏感性和物质平衡对降水的敏感性图,冰川气候敏感性分区图。 在过去70年亚洲高山区各山系的冰川物质平衡演化序列差异显著,喀喇昆仑和西昆仑地区的冰川呈现出稳定态,物质平衡为微弱的正平衡,而喜马拉雅山、天山和祁连山在1990年之后出现加速退缩的趋势。这主要归因于物质平衡对气温、降水等敏感性。利用0.5°分辨率的ERA5 气温和降水数据驱动月尺度的物质平衡模型,通过43条监测冰川的物质平衡率定参数,2000-2016年的1°×1°ASTER物质平衡数据对参数进行空间约束,利用空间参数外推的方法重建了1951-2020年亚洲高山区95085条冰川的物质平衡序列,分析了冰川物质平衡对气温(±0.5k、±1k、±1.5k)和降水(±10%、±20%、±30%)的敏感性,根据物质平衡的空间敏感性差异,结合冰川物质平衡的影响要素(夏季气温的分布、夏季降水的比率、冰川类型的分布、夏季晴空太阳辐射分布等),对亚洲高山区的冰川气候敏感性进行归类划分,主要分为为4类: 气温主控区:指气温是冰川物质平衡变化的主要控制因素,降水占据次要位置; 降水控制区:指冰川主要受降水控制,全年的冰川区气温低于0℃; 冬季累积型冰川气温、降水控制区:指冰川主要受冬季的降水补给,冰川的物质平衡变化是气温和降水共同作用的结果; 夏季累积型冰川气温、降水控制区:指冰川的补给方式是夏季降水,冰川的物质平衡是气温和降水共同作用的结果。
上官冬辉
青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。地表温度作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气候学、水文学和生态学等的研究中。本文利用Aqua和Terra星白天和晚上的四次观测值求得了年平均地表温度。先下载了分辨率为1公里的8天地表温度合成产品MOD11A2、MYD11A2,再通过MRT(MODIS Reprojection Tool)对两景数据进行了批量拼接和投影转化,最后使用IDL计算得到了2010年以后的年平均MODIS地表温度数据。
牛富俊
青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。冻土温度不仅是研究多年冻土区地面热状态的重要指标,而且是冻土工程建设中需考虑的关键因子。GIPL1.0的核心是Kudryavtesv方法,该模型考虑了雪盖、植被和不同土层的热物理性质,但尹国安等发现相比Kudryavtesv方法,引入TTOP模型后精度更高,因此结合冻结/融化指数对模型做了改进,通过实地监测数据验证发现:冻土温度模拟误差小于1℃。因此利用改进后的GIPL1.0 模型模拟了青藏工程走廊的多年冻土温度,并预测了SSP2-4.5气候变化情景下未来多年冻土温度。
牛富俊
该数据集是通过中国高分辨率对地观测中心获取了青藏工程走廊地区的高分1号卫星遥感影像资料,经过多光谱与全色波段的融合处理,得到了空间分辨率2 m的影像数据,在获取地面植被信息过程中,采用面向对象的计算机自动解译与人工目视解译相结合的分类技术,面向对象分类技术是集合邻近像元为对象来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。在实际操作中,借助 eCognition 软件对影像进行自动提取,主要过程为影像分割、信息提取和精度评价。经过与实地定点调查验证,整体提取精度大于90%。
牛富俊
本数据集包括1995,2000,2005,2010和2015年等5期湖泊透明度数据。数据源为:Landsat 5,Landsat 7和Landsat 8。使用方法:利于实测光谱反射率,在分析光谱反射率与同步测量的透明度之间的关系的基础上,采用半经验方法选择最佳波段组合,建立青藏高原湖泊透明度算法,获得水体透明度。通过实测点的验证表明水体的透明度估算相对误差在35%。
宋开山
本数据包括青藏高原中部的25个湖泊的细菌16S核糖体RNA基因序列数据,样品采集时间为2015年7月-8月,使用2.5升采样器对地表水进行了三次重复采样。样品采集后立即带回北京青藏高原研究所生态实验室,所取盐湖的盐度梯度为0.14 ~ 118.07 g/L。本数据为扩增子测序结果。将湖水在0.6 atm过滤压力下浓缩到至0.22μm膜上,然后通过FastDNA SPIN Kit 提试剂盒提取DNA,16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。使用Illumina MiSeq PE250测序仪进行对端测序,原始数据通过Mothur软件进行分析,序列与Silva128数据库进行比对并以97%的同源性将序列划分为操作分类单元(OTU)。本数据可用于分析青藏高原湖泊微生物多样性研究。
孔维栋
本数据包括青藏高原纳木错地区土壤细菌分布数据,可用来探索围栏和放牧对纳木错地区土壤微生物的季节性影响,样品采集时间为2015年5月至9月,土壤样品用冰袋保存,运回北京青藏高原研究所生态实验室;本数据为扩增子测序结果,使用MoBio Powersoil™DNA分离试剂盒提取土壤DNA,引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3')和806R (5'GGACTACNVGGGTWTCTAAT-3'),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件进行分析,之后计算序列之间相似度,并在相似度在97%以上的序列聚类为一个OTU。采用Greengenes参考文库进行序列比对,去除了只在数据库中出现一次的序列。土壤含水率和土壤温度由土壤温湿度计测得,土壤pH值用pH计测定(Sartorius PB-10, Germany),用2 M KCl(土壤/溶液,1:5)提取土壤硝态氮(NO3−)和铵态氮(NH4+)浓度,并用Smartchem200离散自动分析仪进行分析。本数据集对研究干旱半干旱草原土壤微生物多样性具有重大意义。
孔维栋
青藏高原草地土壤细菌多样性数据。样品采集时间为2017年7月至8月,包含高寒草甸,典型草原,荒漠草原3种生态系统共计120个样品。土壤表层样品采集后用冰袋保存,运回北京青藏高原研究所生态实验室,通过MO BIO PowerSoil DNA试剂盒提取土壤DNA,16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5´GGACTACNVGGGTWTCTAAT-3´),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件分析,序列分类依据Silva128数据库,将相似度在97%以上的序列聚类为一个操作分类单元(OTU)。本数据系统地比较了青藏高原样带草地土壤微生物的细菌多样性,对研究微生物在青藏高原的分布具有重大意义。
孔维栋
数据内容:该数据集是青藏高原重点河湖研究区的国产高分系列(GF1/2/3/4)2015-2020年历史存档卫星数据,可覆盖典型河湖区进行有效监测,数据的时间范围为2015-2020年。数据来源和加工方法:数据为1级产品,经过均衡化辐射校正,通过不同检测器的均衡功能对影响传感器的变化进行校正,部分数据基于同时期的Landsat8影像为底图,选取控制点,进行图像几何校正,之后基于DEM数据进行正射校正,并对相应的数据进行波段融合处理。数据质量描述:高分系列卫星由中国资源卫星应用中心负责处理,有中科院空天院卫星地面接收站接收的原始数据和经过加工处理形成的各级产品。其中,1A级(预处理级辐射校正影像产品):经数据解析、均一化辐射校正、去噪、MTFC、CCD拼接、波段配准等处理的影像数据;并提供卫星直传姿轨数据生产的RPC文件。具体参考中国资源卫星应用中心数据网站文件。数据应用成果及前景:数据为国产高分数据,分辨率高,可应用于监测青藏高原作为亚洲水塔的变化以及产生的影像,检验区内其他数据的准确性。
邱玉宝
数据是本项目成员自主研发的气候系统模式FGOALS对北极海冰密集度和海冰覆盖范围进行预测的结果。同化技术的正确选取,是北极海冰预测的重要因素,在海冰资料同化技术中,奇异值演化插值卡尔曼滤波(简称SEIK),是发展相对较早但是仍很常用的一种滤波算法,但由于计算所有格点之间的误差协方差,存在虚假的遥相关误差,因此考虑发展局部滤波方法,对海冰密集度和海冰厚度进行同化。本项目将在气候系统模式FGOALS 中,初始化处理欧洲航天局(ESA)CryoSat-2 和Soil Moisture and Ocean Salinity(SMOS)卫星遥感反演的海冰厚度数据。
宋米荣
数据是本项目成员自主研发的气候系统模式FGOALS对北极海冰密集度和海冰覆盖范围进行预测的结果。同化技术的正确选取,是北极海冰预测的重要因素,在海冰资料同化技术中,奇异值演化插值卡尔曼滤波(简称SEIK),是发展相对较早但是仍很常用的一种滤波算法,但由于计算所有格点之间的误差协方差,存在虚假的遥相关误差,因此考虑发展局部滤波方法,对海冰密集度和海冰厚度进行同化。本项目将在气候系统模式FGOALS 中,初始化处理欧洲航天局(ESA)CryoSat-2 和Soil Moisture and Ocean Salinity(SMOS)卫星遥感反演的海冰厚度数据。
宋米荣
(1)数据内容:过去千年三极(北极、南极、青藏高原)降水场数据集(precipitation anomaly based on the millinnial mean);(2)数据来源及加工方法:该数据由作者自主生产,通过古气候数据同化方法同化三极地区降水代用资料而生产;(3)数据质量描述:该数据集和多个器测的降水数据集之间具有高度的时空一致性(相关系数在0.35以上,p<0.001; 纳什效率系数在0.3以上)。此外,和多个基于代用资料重建的降水数据序列之间的相关系数在0.2-0.6之间(p<0.001);(4)可用于三极地区过去千年降水时空变化研究。
方苗
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件