本数据集是2017年青藏高原冰川数据,使用了210景Landsat8 OLI卫星多光谱遥感数据,时间从2013年至2018年,90%来源于2017年,85%的Landsat8 OLI数据成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容: Value是冰川斑块在系统中自动生成的编码。 格网单元:30m 数据的投影方式:Albers等积圆锥投影。 数据加工方法:基于210景Landsat8 OLI卫星多光谱遥感数据,校正、镶嵌为假彩色合成影像(RGB:654),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth和HJ1A/1B卫星同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137。 原始遥感资料数据精度:30m 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302), 第二次青藏高原综合科学考察研究资助(2019QZKK0202),国家自然科学基金项目(41530748, 91747201)、中国科学院“十三五”信息化建设专项资助(XXH13505-06)。
叶庆华
1)数据内容:高分辨率西南极冰盖表面物质平衡格点数据库 投影:Polar Stereographic Projection 2)数据来源及加工方法:基于高分辨率冰芯代用资料、ERA-Interim再分析降水和蒸发数据和极地气候模式RACMO2.3输出结果,利用改进的类克里格插值方法,建立了西南极冰盖表面物质平衡格点数据集 3)数据质量描述:精度优于再分析资料。 4)数据应用成果及前景:该数据库可用于水文学、气候学及冰川学等学科领域,比如:气候模式(CMIP5及 CESM等)的验证,西南极冰盖物质平衡长时间尺度变化评估研究。
王叶堂
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网下游混合林站气象要素观测数据。站点位于内蒙古额济纳旗达来呼布镇四道桥,下垫面是胡杨与柽柳。观测点的经纬度是101.1335E,41.9903N,海拔874m。空气温度、相对湿度传感器架设在28m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在28m处;风速与风向传感器架设在28m,朝向正北;四分量辐射仪安装在24m处,朝向正南;两个红外温度计安装在24m处,朝向正南,探头朝向是垂直向下;两个光合有效辐射仪安装在24m处,朝向正南,探头垂直向上和向下方向各一个;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、60cm、100cm、160cm、200cm和240cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下2cm、4cm、10cm、20cm、40cm、60cm、100cm、160cm、200cm和240cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_28m、RH_28m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_28m)(单位:米/秒)、风向(WD_28m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_100cm、Ts_160cm、Ts_200cm、Ts_240cm)(单位:摄氏度)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_100cm、Ms_160cm、Ms_200cm、Ms_240cm)(单位:体积含水量,百分比)、向上与向下光合有效辐射(PAR_up、PAR_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示; 由于采集器内部电池供电不足,导致1月6日至9日,11月10日至12月14日间数据间断出现一些缺失;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
本数据集是基于MODIS数据进行处理和分析后得到,通过改进不同下垫面下的不同积雪提取算法,提高了积雪范围识别精度,同时利用隐马尔科夫去云算法和SSM/I雪水当量结合,最终生成完全无云的逐日积雪面积产品。取值范围: 1:积雪;0 非积雪。空间分辨率为0.005 度(约500m),时间范围是2000年2月24日至2019年12月31日。 数据格式为geotiff,推荐使用Arcmap或python +GDAL打开和处理数据
郝晓华
本数据为RCP4.5情景下的月干燥指数数据集(Aridity Index, AI)。AI数据为降水与潜在蒸散发的比值。本数据由14个模式平均计算得到。这14个模式分别为:CanESM2;CCSM4;CNRM-CM5;CSIRO-Mk3-6-0;GISS-E2-R;HadGEM2-CC;HadGEM2-ES;inmcm4;IPSL-CM5A-LR;MIROC5;MIROC-ESM-CHEM;MIROC-ESM;MPI-ESM-LR;MRI-CGCM3。空间分辨率为全球2度*2度,时间分辨率为2020年1月-2099年12月。该数据集即可用于中亚大湖区未来干湿变化情景分析,也可用于全球其他区域在未来情景下的干湿过去和格局的分析。
华丽娟
本数据集包含从2017年1月1日到2018年12月31日,纳木错台站观测的气温、气压、相对湿度、风速、降水、总辐射等日值。 数据集加工方法为原始数据经过质量控制后形成连续的时间序列。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,剔除了曳点数据和传感器出现故障造成的系统误差。 该数据的服务对象为从事大气物理、大气环境、气候、冰川、冻土等学科科学研究和人才培养的专业人员。主要应用于冰川学、气候学和环境变化、寒区水文过程以及冻土学等学科领域。 测量参数的单位和精度如下: 空气温度,单位:℃,精度:0.1℃; 空气相对湿度,单位:%,精度:0.1%; 风速,单位:m/s,精度:0.1m/s; 气压,单位:hPa,精度:0.1hPa; 降水,单位:mm,精度:0.1mm; 总辐射,单位:W/m2,精度:0.1W/m2。
王君波, 邬光剑
积雪面积比例(fractional snow cover, FSC)是定量描述单位像元内积雪覆盖面积(Snow Cover Area SCA)与像元空间范围的比值。本数据集涵盖区域为北极地区(北纬35°至北纬90°),使用Google Earth Engine平台,采用的初始数据为MOD09GA 分辨率为1000m的全球地表反射率产品,数据制备时间为2000年2月24日至2019年11月18日。方法为:在训练样本区域,使用Landsat 8地表反射率的数据和SNOMAP算法制备FSC的参考数据集,将该数据集作为训练样本区域FSC真值,从而建立训练样本区域FSC与基于MODIS地表反射率产品的雪被指数NDSI之间的线性回归模型。使用该模型,将MODIS全球地表反射率产品作为输入,制备北极地区积雪面积比例时序数据。该数据集可为区域气候模拟、水文模型等提供积雪分布的定量信息。
马媛, 李弘毅
第三极地区近期冰川变化因其对下游水资源供给的重要意义而成为周边各国政府关注的热点。第三极地区冰川表面高程变化数据产品基于获取于2000年的SRTM和2015年前后ASTER立体像对,在第三极地区范围内选了40余个典型冰川区来进行相应时段冰川表面高程估算。本产品共计估算了第三极地区超过14000条冰川2000-2015s时段内的表面高程变化,调查面积约占整个第三极地区冰川面积的25%。数据的覆盖范围为除阿尔泰山以外的整个第三极地区,空间分辨率为30m。
陈安安
本数据集来源于中国长时间序列雪深数据集,利用三江源边界进行提取形成三江源雪深数据集。取值范围:0-100 cm。时间分辨率:逐日。空间分辨率为0.25 度(约25km),时间范围是1980年1月1日至2020年12月31日。雪深数据基于星载被动微波遥感数据生产,使用了三个不同的被动微波传感器数据,它们分别是SMMR,SSM/I和SSMI/S。由于不同的传感器之间存在一定的系统偏差,因此,首先对不同传感器的数据进行了交叉订正,然后再基于被动微波亮度温度梯度法制作中国长时间序列雪深数据集。头文件信息可参考数据集header.txt。
戴礼云
该数据集记录了阿里荒漠环境综合观测研究站,2017-2018年气象数据集,数据时间分辨率为天。包含如下基本气象参数:气温(距地面1.5米,半小时观测一次,单位:摄氏度)、相对湿度(距地面1.5米,半小时一次,单位:%)、风速(距地面1.5米,半小时一次,单位:米/秒)、风向(距地面1.5米,半小时一次,单位:度)、气压(距地面1.5米,半小时一次,单位:hPa)、降水量(24时一次,单位:毫米)、水汽压(单位:Kpa)、蒸发(单位:毫米)、向下短波辐射(单位:W/m²)、向上短波辐射(单位:W/m²) 、向下长波辐射(单位:W/m²) 、向上长波辐射(单位:W/m²) 、净辐射(单位:W/m²)、地表反照率(单位:%)。 数据采集地点:中国科学院青藏高原研究所阿里荒漠环境综合观测研究站观测场,经度:79°42'5";纬度:33°23'30";海拔:4264米。 数据从阿里站自动气象站直接下载,其中降水数据是自动雨雪量计和人工观测校正得到每天的降水量,其它均为半小时的观测值经平均得到逐日均值。 观测仪器型号:温度和湿度:HMP45C空气温湿度探头;降水:T200-B雨雪量仪传感器;风速和风向: Vaisala 05013风速风向传感器;净辐射:Kipp Zonen NR01净辐射传感器;气压:Vaisala PTB210大气压传感器。采集器型号:CR 1000,采集时间:30分钟。 本数据表是由专人根据观测记录进行加工和质量控制。严格按照仪器操作规范进行观测和数据采集,在加工生成数据表时,剔除了一些明显误差数据
赵华标
青藏高原湖泊广布,近年来呈现普遍扩张的趋势。掌握这些湖泊的水位及水量变化信息对认识区域水文-气候交互机制及其演变规律意义重大。本数据集包含青藏高原52个大、中型湖泊2000 - 2017年的水位、水量变化,面积-水位关系曲线等信息,多数湖泊的水位及水量变化时间分辨率在月尺度或旬尺度。本数据基于多源测高卫星数据和Landsat光学影像制作,将光学影像观测到的湖泊岸线变动转化为水位信息(简称光学水位),并且借助光学水位移除了多源测高水位之间系统偏差。野外实验和理论分析的结果一致表明光学水位的精度在0.1 - 0.2 m,与测高水位精度相当,测高水位的不确定性用同一周期内有效水面足迹点高程的标准差表示,已经包含在数据集中。本数据集可以应用于水资源和水安全管理,湖泊流域水文分析,水量平衡分析等,尤其在湖泊溢流洪水监测方面有较大的潜力。
李兴东, 龙笛, 黄琦, 韩鹏飞, 赵凡玉, 荣田佳秀
北极圈大河流域内缺乏一套长时间序列的高分辨率降水格点数据,本数据提供了北极主要大河流域的逐日降水,数据集的范围为北纬45°至76.15°,使用的元数据包括:GSOD的1980-2015年气象站点数据,ERA-interim 1980-2018年降水数据,方法为:对站点数据进行风速修正,将其使用空间插值方法获得一套高分辨率的插值降水格点数据,使用改进后的分位数映射法(Quantile-Mapping),以插值降水数据作为背景数据,对ERA-interim数据进行频率订正,最终得到订正后的ERA-interim降水格点数据。可为北极大河流域水文过程的研究提供一套新的降水资料。
雷华锦, 李弘毅
青藏高原地温分布图是基于程国栋(1984)提出的多年冻土稳定型划分指标(表1),利用统计模拟的年变化深度地温数据划分的。利用地理加权回归方法,融合2010年左右233个钻孔年变化深度处的年平均地温数据和遥感积雪日数、GLASS叶面积指数、SoilGrids250m的土壤沙粒含量、土壤粘粒含量、土壤粉粒含量、土壤有机质和土壤体密度数据产品、中国气象局陆面数据同化系统(CLDAS)输出的二版土壤湿度产品和融合了近4万区域自动气象站和FY2/EMSIP降水产品的融合产品。估计得到了代表2010年代的青藏高原1km分辨率年冻土稳定性分布图。数据格式为Arcgis Raster。
冉有华
数据是根据《1:1,000,000中国植被图集》数字化而来,将图集中的60幅图件一一进行数字化(多边形属性),然后进行投影、匹配、拼接,最后为每个多边形赋植被属性,植被属性包括:vege_id(植被群系编号),新编号,植被群系和亚群系,植被型编号,植被型,植被型组编号,植被型组,植被大类,以及相应的英文属性信息。 《1:1,000,000中国植被图集》由著名植被生态学家侯学煜院士主编,由中国科学院有关研究所、有关部委和各省区有关部门、高等院校等53个单位250多位专家共同编制,于2001年科学出版社正式出版,国内外公开发行。 此图集是我国植被生态学工作者40多年来继《中国植被》等专著出版后又一项总结性成果,是国家自然资源和自然条件的基本图件。它详细反映了我国11个植被类型组、54个植被型的796个群系和亚群系植被单位的分布状况、水平地带性和垂直地带性分布规律,同时反映了我国2000多个植物优势种、主要农作物和经济作物的实际分布状况及优势种与土壤和地面地质的密切关系。由于此图集属于现实植被图图种,故反映出我国植被近斯的质量状况。 此图集为四开本,280页,包括1:1,000,000 分幅的中国植被类型图60幅、1:10,000,000 的中国地势图、中国植被图和中国植被区划图各1幅,附中英文对照图例。 此图集是国家自然资源和自然地理特征的基本图件,是研究全球环境变化、生物多样性、环境保护与监测等必不可少的科学资料和重要依据。植被图是现存植被空间分布在地图上的具体表达,百万分之一中国植被图是迄今为止以全国为对象的最详细、精确的植被图。数据收集时间为2011-2012年,可以服务于从事植被生态研究的学生和科研人员。本数据仅限于研究所内部交流。 图件采用 Albers投影,其参数如下: · 坐 标 系:大地坐标系 · 投 影:Albers正轴等面积双标准纬线圆锥投影 · 南标准纬线:25°N · 北标准纬线:47°N · 中央经线:105°E · 坐标原点:105°E与赤道的交点 · 纬向偏移:0 · 经向偏移:0
侯学煜
数据内容:本数据集包括1998-2017年青藏高原逐年的气温和降水格点数据,是进行气候变化及其对生态环境影响的基础性数据。数据来源及加工:源数据来自基于国家气象信息中心基础资料专项最新整编的中国地面高密度台站(2400多个国家级气象观测站)的气温和降水日值资料,对缺测站点进行预处理之后,利用ANUSPLIN软件的薄盘样条法 (TPS,Thin Plate Spline)进行空间插值,生成青藏高原及200km缓冲区空间分辨率1km的年值格点数据。数据应用:该数据可用于气候变化对生态环境影响的研究中。
丁明军
试验所采用的区域气候模式(RCM)是国际理论物理中心的RegCM4 (Giorgi et al., 2012),模拟区域为联合区域气候降尺度协同试验第二阶段东亚(CORDEX Phase II East Asia)的推荐区域,覆盖整个中国及其周边的东亚地区。模式的水平分辨率为25 km,模式垂直方向是18层,层顶高度为10 hPa,模式的参数设置按照Gao et al. (2016, 2017),并根据韩振宇等 (2015) 更新了中国土地覆盖数据,以可以地描述下垫面植被状况。RegCM4所需的初始和侧边界条件由CMIP5全球气候模式HadGEM2-ES的模拟结果提供(RCP4.5情景),数据主要包含气温和降水要素。
高学杰
南北极海冰数据集原始数据由美国国家冰雪数据中心(The National Snow and Ice Data Center:NSIDC)通过遥感数据生成,数据格式为geotiff格式与image格式,数据空间分辨率为25km,时间分辨率为日。数据内容是南北极的海冰范围及海冰密集度。本研究工作通过对南北极海冰的范围与海冰密集度后处理后生成netcdf格式产品。产品数据包含1979-2019年南北极海冰范围与海冰密集度数据,其时间分辨率为逐日,覆盖范围为南极与北极,水平空间分辨率为12.5km,海冰范围矩阵中数据值为1表示该网格为海冰,海冰密集度用0-1000表示,该网格值除以10即为该网格海冰密集度值。
叶爱中
该数据为中国逐月平均温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2021.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。数据坐标系统建议使用WGS84。
彭守璋
高质量的多年冻土图是多年冻土环境效应研究和寒区工程应用的基础数据。该数据集是在系统整编青藏高原2005-2015年共237个钻孔位置年变化深度年平均地温测量数据基础上,利用支持向量回归模型融合了这些地面观测与遥感冻结指数、融化指数、积雪日数、叶面积指数、土壤容重、高程和高质量的土壤水分再分析资料, 集合模拟了代表2005-2015年的青藏高原1km分辨率年平均地温分布图。10折交叉验证表明,模拟的年平均地温的均方根误差约为0.75 °C, 偏差约0.01 °C。基于高海拔多年冻土稳定性分类体系,利用年平均地温,划分了多年冻土的热稳定类型。数据显示,青藏高原多年冻土面积约115.02 (105.47-129.59) *104 km2, 其中, 极稳定型(<-5.0 °C)、稳定型(-3.0~-5.0 °C)、亚稳定型(-1.5~-3.0 °C)、过渡型(-0.5~-1.5 °C)和不稳定型(>-0.5 °C)多年冻土面积分别为0.86*104 km2, 9.62*104 km2, 38.45*104 km2, 42.29*104 km2和23.80*104 km2。该数据集可用于寒区工程的规划、设计及生态规划与管理等,并可作为多年冻土现状的数据基准,用于评估未来青藏高原多年冻土的变化。关于该数据更详细的方法等信息可参考《中国科学:地球科学》的论文(Ran et al., 2020)。
冉有华, 李新
本数据集是一个包含接近36年(1983.7-2018.12)的全球高分辨率地表太阳辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于水文建模、地表建模和工程应用。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据以及MODIS气溶胶和反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比ISCCP-FD、GEWEX-SRB和CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来地表过程模拟的研究和光伏发电的应用。
唐文君
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件