该数据集是那曲通量站点(31.64°N 92.01°E, 4598 m a.s.l.)的每日涡度相关通量观测数据,包括生态系统净生态系统生产力(NEP)、总初级生产力(GPP)和生态系统呼吸(ER)数据。该数据预处理主要步骤包括野点去除(±3σ)、坐标轴旋转(三维风旋转)、Webb-Pearman-Leuning校正、异常值剔除、碳通量插补与分解等,缺失数据通过CO2通量值(Fc)与环境因子之间的非线性经验公式进行插补。
张扬建
植被调查数据是研究生态系统结构与功能必不可少的数据。青藏高原地区蕴含广袤的草地生态系统,主要包括高寒草甸、高寒草地、以及高寒荒漠化的草地。由于独特的地理位置以及高海拔缺氧的环境条件,在藏北高原的群落调查数据较为稀少。本数据集包括2019年藏北样带上47个采样点的的地上生物量和盖度数据,采样时间为7-8月。样方大小为50cm×50cm,烘干后称取植物干重。本数据集可用于生产力的空间分析与模型的校准工作。
张扬建, 朱军涛
该数据集是那曲通量站点(31.64°N 92.01°E, 4598 m a.s.l.)的每日涡度相关通量观测数据,包括净生态系统生产力(NEP)、总初级生产力(GPP)、生态系统呼吸(ER)、蒸散、潜热、感热、空气温度、相对湿度、风速、土壤温度、土壤含水量等数据。该数据预处理主要步骤包括野点去除(±3σ)、坐标轴旋转(三维风旋转)、Webb-Pearman-Leuning校正、异常值剔除、碳通量插补与分解等,缺失数据通过CO2通量值(Fc)与环境因子之间的非线性经验公式进行插补。
张扬建
该数据集为全球呼吸数据,包含自养呼吸(ra)和异养呼吸(rh)两部分,由耦合模式比较计划第6阶段(CMIP6)中TaiESM1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为0.9°x1.25°。模拟数据详细说明可见链接https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.AS-RCEC.TaiESM1.historical。
美国气候模式诊断和对比计划委员会
CMIP6是世界气候研究项目(WCRP)组织的第六次气候模式比较计划。原始数据来源于https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6。该数据集包含了CMIP6中情景模式比较子计划(ScenarioMIP)的4种SSP情景组合。(1) SSP126:在SSP1(低强迫情景)基础上对RCP2.6情景的升级(辐射强迫在2100年达到2.6W/m2)。(2)SSP245:在SSP2(中等强迫情景)基础上对RCP4.5情景的升级 (辐射强迫在2100年达到4.5 W/m2)。(3)SSP370:在SSP3(中等强迫情景)基础上新增的RCP7.0排放路径 (辐射强迫在2100年达到7.0 W/m2)。(4)SSP585:在SSP5(高强迫情景)基础上对RCP8.5情景的升级(SSP585是唯一能使辐射强迫在2100年达到8.5 W/m2的SSP场景)。 利用GRU数据对原始CMIP数据进行后处理偏差校正得到2046-2065年月尺度降水(pr)和气温(tas)预估后处理数据集, 参考期为1985-2014年。
叶爱中
1982-2015年北极多年冻土变化生态调节价值数据集,时间分辨率为1982、2015两期以及两期变化率,覆盖范围为整个环北极苔原区,空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态学方法结合,量化了北极多年冻土对生态系统的调节服务价值,单价参考了剔除降水和雪水当量后的活动层厚度与NDVI变化相关性(0.35)及其草地生态系统服务价值(苔原生态系统服务单价以1/3草地生态系统服务价值为标准)。
王世金
基于SBAS-InSAR技术获取的地表季节性形变以及基于变分模态分解校正后的ERA5-Land时空多层土壤湿度数据反演青藏高原五道梁多年冻土区域的活动层厚度,数据时间范围为2017-2020年,空间分辨率为1km。该数据产品可用于研究青藏高原多年冻土区域活动层厚度变化以及分析其与气候变化以及水循环、能量循环的相互作用关系,对于了解多年冻土退化状况、高原环境演化以及冻土退化对生态和气候的影响具有重要意义。
陆平, 郝彤, 李荣兴
北极阿拉斯加站点气溶胶光学厚度数据是基于美国能源部大气辐射观测计划在北极阿拉斯加站点的观测数据产品而形成,数据覆盖时间从1998年到2020年,时间分辨率为逐小时,覆盖站点为北极阿拉斯加站点,经纬度坐标为(71°19′22.8″N, 156°36′32.4″ W)。观测数据来源为MFRSR仪器观测的辐射数据反演获得,所包含光学特征变量为气溶胶光学厚度,观测反演误差范围约为15%。数据格式为nc格式。
赵传峰
三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
南极冰盖21、22流域分布有松岛冰川、斯维特冰川等,是西南极融化最为剧烈的地区之一。本数据集首先利用Cryosat-2数据(2010年8月至2018年10月),在每个规则格网内,考虑地形项、季节波动、后向散射系数、波形前缘宽度及升降轨等因素建立平面方程,通过最小二乘回归计算格网内冰盖表面高程变化。另外,我们使用了ICESat-2数据(2018年10月至2020年12月),通过在每个规则格网内获取两个时期的卫星升降轨道交叉点处的高程差值,进而计算该时期内冰盖的表面高程变化。两个时期的面高程变化数据空间分辨率为5km×5km,文件格式为GeoTIFF,投影坐标为极地立体投影(EPSG 3031),并由所使用的卫星测高数据名称命名(即CryoSat-2、ICESat-2)。该数据可使用ArcMap、QGIS等软件打开。结果表明,该区域2010-2018年平均高程变化率为-0.34±0.08m/yr,属于融化剧烈地区。2018年10月-2020年11月年平均高程变化率为-0.38±0.06m/yr,相比于CryoSat-2计算结果该区域融化处于加剧状态。
杨博锦, 黄华兵, 梁爽, 李新武
数据内容:国民经济工业增加值(月度)(2010-2021) 数据来源及加工方法:从世界银行官方网站、新浪网获取2010-2021年第三极(中国地区)工业经济原始数据,通过数据整理、筛选及清洗得到2010-2021年(中国地区)工业经济数据集,数据起始时间为2010年至2021年,Microsoft Excel(xls)格式。 数据质量描述:优良 数据应用成果及前景:作为社会工业经济数据提供有效参考
傅文学
2000-2020年三极地区0.1º气溶胶光学厚度数据集(也称为“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集),结合Merra-2模式数据与MODIS卫星传感器AOD制作,数据覆盖时间从2000年到2020年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁
青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。活动层厚度不仅是研究多年冻土区地面热状态的重要指标,而且是冻土工程建设中需考虑的关键因子。GIPL1.0的核心是Kudryavtesv方法,该模型考虑了雪盖、植被和不同土层的热物理性质,但尹国安等发现相比Kudryavtesv方法,引入TTOP模型后精度更高,因此结合冻结/融化指数对模型做了改进,通过实地监测数据验证发现:活动层厚度模拟误差小于50cm。因此利用改进后的GIPL1.0 模型模拟了青藏工程走廊的活动层厚度,并预测了SSP2-4.5气候变化情景下未来活动层的厚度。
牛富俊
(1)数据内容:1500-2000年年平均的北半球环状模指数和南半球环状模指数;(2)数据来源及加工方法:该数据由作者自主生产,基于PAGES2k代用资料数据集,利用机器学习模型(随机森林、极端随机树、轻量梯度提升机、CatBoost)重建而产生。(3)数据质量描述:该数据集与多个器测数据在器测时段内有较高的一致性,重建效果更好。数据可用于研究多时间尺度(年际、年代际、多年代际)上南北半球主要大气环流的变化规律及机理。
杨佼
基于12套过去千年温度资料(包括2套青藏高原夏季温度格点重建数据集、2条北极温度重建序列、1套北极格点温度重建序列、6套全球温度格点重建数据集,以及1套过去千年全球再分析数据集),利用最优信号提取法重建了过去千年(900–1999 CE)青藏高原和北极夏季年分辨率气温变化序列。青藏高原的选取范围是(27°N–36°N, 77°E–106°E),北极的选取范围是(60°N–90°N)。重建目标是仪器观测数据CRUTEM4v数据集6月至8月夏季平均气温基于1961–1990 CE时段的异常值。数据可用于研究过去千年青藏高原和北极的温度变化规律及机理。
史锋
(1)数据内容:过去200年南极区域海冰范围(最北边界)数据集;(2)数据来源及加工方法:该数据利用6条年分辨率的代用指标(冰芯MSA、积累率等),基于统计模型产生;(3)数据质量描述:年分辨率;包含区域:印度洋-西太平洋(50°–150°E, IndWPac),罗斯海 (160°E–140°W, RS),阿蒙森海(90°–140°W, AS),别林斯高晋海 (50°–90°W, BS),威德尔海 (50°W–20°E, WS);(4)可用于研究南极海冰的年代际演变特征。
杨佼
青藏高原(TP)在春季和夏季作为一个巨大的高架式地表和大气热源,对区域和全球气候和气候具有重要影响。为了探讨TP的热强迫效应,制备了青藏高原感热异常的全球模拟 敏感性试验数据集。 本数据包含三组敏感性试验:(1)全耦合模式CESM1.2.0中春季3-5月高原感热偏强cgcm_lar_mon_3-12-2.nc和高原感热偏弱cgcm_sma_mon_3-12-2.nc的敏感性试验;(2)单独大气环流模式CAM4.0中春季3-5月高原感热偏强cam_lar_mon3-8.nc和高原感热偏弱cam_sma_mon3-8.nc的敏感性试验。 包括:三维风、位势高度、气温、地表温度、比湿、感热通量、潜热通量、降水等常规变量 空间范围:全球模拟结果
段安民
数据为excel文件,文件包括4个表格,表格名称分别为:阿勒泰积雪DOC时间系列、阿勒泰积雪雪坑数据、阿勒泰积雪MAC(吸收截面)和中亚木斯岛冰川BC、OC、DUST数据四个表格。 阿勒泰积雪DOC表格含:样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共七列,47个样品数据。 阿勒泰积雪雪坑表格含:雪坑号、样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共8列,238个样品数据。 阿勒泰积雪MAC表格含:采样时间、MAC和AAE共3列,46个样品数据。 中亚木斯岛冰川BC、OC、DUST数据表格含:code no(样品号)、Latitute(纬度)、Longitude(经度)、/m a.s.l(海拔高度)、snow type(积雪类型)、BC、OC和DUST共8列,按采样时间分析。共105行数据。 缩写解释: DOC:Dissolved Organic Carbon 溶解性有机碳 MAC:mass absorption cross section吸收截面 BC:black Carbon黑碳 DUST:粉尘 OC:有机碳 TN:Total Nitrate (总氮) PPM:ug g-1 (微克每克 ) PPb:ng g-1( 纳克每克)
张玉兰
亚洲高山区是世界第三极,称之为“亚洲水塔”,受气候变暖的影响,冰川持续亏损,深刻改变了冰川水资源的供需关系。为了系统认识冰川对气候变化的响应程度,项目通过冰川物质平衡的敏感性,揭示冰川物质平衡变化与气候因子之间的关系。数据包括两张图:物质平衡对气温的敏感性和物质平衡对降水的敏感性图,冰川气候敏感性分区图。 在过去70年亚洲高山区各山系的冰川物质平衡演化序列差异显著,喀喇昆仑和西昆仑地区的冰川呈现出稳定态,物质平衡为微弱的正平衡,而喜马拉雅山、天山和祁连山在1990年之后出现加速退缩的趋势。这主要归因于物质平衡对气温、降水等敏感性。利用0.5°分辨率的ERA5 气温和降水数据驱动月尺度的物质平衡模型,通过43条监测冰川的物质平衡率定参数,2000-2016年的1°×1°ASTER物质平衡数据对参数进行空间约束,利用空间参数外推的方法重建了1951-2020年亚洲高山区95085条冰川的物质平衡序列,分析了冰川物质平衡对气温(±0.5k、±1k、±1.5k)和降水(±10%、±20%、±30%)的敏感性,根据物质平衡的空间敏感性差异,结合冰川物质平衡的影响要素(夏季气温的分布、夏季降水的比率、冰川类型的分布、夏季晴空太阳辐射分布等),对亚洲高山区的冰川气候敏感性进行归类划分,主要分为为4类: 气温主控区:指气温是冰川物质平衡变化的主要控制因素,降水占据次要位置; 降水控制区:指冰川主要受降水控制,全年的冰川区气温低于0℃; 冬季累积型冰川气温、降水控制区:指冰川主要受冬季的降水补给,冰川的物质平衡变化是气温和降水共同作用的结果; 夏季累积型冰川气温、降水控制区:指冰川的补给方式是夏季降水,冰川的物质平衡是气温和降水共同作用的结果。
上官冬辉
青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。地表温度作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气候学、水文学和生态学等的研究中。本文利用Aqua和Terra星白天和晚上的四次观测值求得了年平均地表温度。先下载了分辨率为1公里的8天地表温度合成产品MOD11A2、MYD11A2,再通过MRT(MODIS Reprojection Tool)对两景数据进行了批量拼接和投影转化,最后使用IDL计算得到了2010年以后的年平均MODIS地表温度数据。
牛富俊
青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。冻土温度不仅是研究多年冻土区地面热状态的重要指标,而且是冻土工程建设中需考虑的关键因子。GIPL1.0的核心是Kudryavtesv方法,该模型考虑了雪盖、植被和不同土层的热物理性质,但尹国安等发现相比Kudryavtesv方法,引入TTOP模型后精度更高,因此结合冻结/融化指数对模型做了改进,通过实地监测数据验证发现:冻土温度模拟误差小于1℃。因此利用改进后的GIPL1.0 模型模拟了青藏工程走廊的多年冻土温度,并预测了SSP2-4.5气候变化情景下未来多年冻土温度。
牛富俊
该数据集是通过中国高分辨率对地观测中心获取了青藏工程走廊地区的高分1号卫星遥感影像资料,经过多光谱与全色波段的融合处理,得到了空间分辨率2 m的影像数据,在获取地面植被信息过程中,采用面向对象的计算机自动解译与人工目视解译相结合的分类技术,面向对象分类技术是集合邻近像元为对象来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。在实际操作中,借助 eCognition 软件对影像进行自动提取,主要过程为影像分割、信息提取和精度评价。经过与实地定点调查验证,整体提取精度大于90%。
牛富俊
本数据集包括1995,2000,2005,2010和2015年等5期湖泊透明度数据。数据源为:Landsat 5,Landsat 7和Landsat 8。使用方法:利于实测光谱反射率,在分析光谱反射率与同步测量的透明度之间的关系的基础上,采用半经验方法选择最佳波段组合,建立青藏高原湖泊透明度算法,获得水体透明度。通过实测点的验证表明水体的透明度估算相对误差在35%。
宋开山
本数据包括青藏高原中部的25个湖泊的细菌16S核糖体RNA基因序列数据,样品采集时间为2015年7月-8月,使用2.5升采样器对地表水进行了三次重复采样。样品采集后立即带回北京青藏高原研究所生态实验室,所取盐湖的盐度梯度为0.14 ~ 118.07 g/L。本数据为扩增子测序结果。将湖水在0.6 atm过滤压力下浓缩到至0.22μm膜上,然后通过FastDNA SPIN Kit 提试剂盒提取DNA,16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。使用Illumina MiSeq PE250测序仪进行对端测序,原始数据通过Mothur软件进行分析,序列与Silva128数据库进行比对并以97%的同源性将序列划分为操作分类单元(OTU)。本数据可用于分析青藏高原湖泊微生物多样性研究。
孔维栋
本数据包括青藏高原纳木错地区土壤细菌分布数据,可用来探索围栏和放牧对纳木错地区土壤微生物的季节性影响,样品采集时间为2015年5月至9月,土壤样品用冰袋保存,运回北京青藏高原研究所生态实验室;本数据为扩增子测序结果,使用MoBio Powersoil™DNA分离试剂盒提取土壤DNA,引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3')和806R (5'GGACTACNVGGGTWTCTAAT-3'),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件进行分析,之后计算序列之间相似度,并在相似度在97%以上的序列聚类为一个OTU。采用Greengenes参考文库进行序列比对,去除了只在数据库中出现一次的序列。土壤含水率和土壤温度由土壤温湿度计测得,土壤pH值用pH计测定(Sartorius PB-10, Germany),用2 M KCl(土壤/溶液,1:5)提取土壤硝态氮(NO3−)和铵态氮(NH4+)浓度,并用Smartchem200离散自动分析仪进行分析。本数据集对研究干旱半干旱草原土壤微生物多样性具有重大意义。
孔维栋
青藏高原草地土壤细菌多样性数据。样品采集时间为2017年7月至8月,包含高寒草甸,典型草原,荒漠草原3种生态系统共计120个样品。土壤表层样品采集后用冰袋保存,运回北京青藏高原研究所生态实验室,通过MO BIO PowerSoil DNA试剂盒提取土壤DNA,16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5´GGACTACNVGGGTWTCTAAT-3´),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件分析,序列分类依据Silva128数据库,将相似度在97%以上的序列聚类为一个操作分类单元(OTU)。本数据系统地比较了青藏高原样带草地土壤微生物的细菌多样性,对研究微生物在青藏高原的分布具有重大意义。
孔维栋
数据内容:该数据集是青藏高原重点河湖研究区的国产高分系列(GF1/2/3/4)2015-2020年历史存档卫星数据,可覆盖典型河湖区进行有效监测,数据的时间范围为2015-2020年。数据来源和加工方法:数据为1级产品,经过均衡化辐射校正,通过不同检测器的均衡功能对影响传感器的变化进行校正,部分数据基于同时期的Landsat8影像为底图,选取控制点,进行图像几何校正,之后基于DEM数据进行正射校正,并对相应的数据进行波段融合处理。数据质量描述:高分系列卫星由中国资源卫星应用中心负责处理,有中科院空天院卫星地面接收站接收的原始数据和经过加工处理形成的各级产品。其中,1A级(预处理级辐射校正影像产品):经数据解析、均一化辐射校正、去噪、MTFC、CCD拼接、波段配准等处理的影像数据;并提供卫星直传姿轨数据生产的RPC文件。具体参考中国资源卫星应用中心数据网站文件。数据应用成果及前景:数据为国产高分数据,分辨率高,可应用于监测青藏高原作为亚洲水塔的变化以及产生的影像,检验区内其他数据的准确性。
邱玉宝
数据是本项目成员自主研发的气候系统模式FGOALS对北极海冰密集度和海冰覆盖范围进行预测的结果。同化技术的正确选取,是北极海冰预测的重要因素,在海冰资料同化技术中,奇异值演化插值卡尔曼滤波(简称SEIK),是发展相对较早但是仍很常用的一种滤波算法,但由于计算所有格点之间的误差协方差,存在虚假的遥相关误差,因此考虑发展局部滤波方法,对海冰密集度和海冰厚度进行同化。本项目将在气候系统模式FGOALS 中,初始化处理欧洲航天局(ESA)CryoSat-2 和Soil Moisture and Ocean Salinity(SMOS)卫星遥感反演的海冰厚度数据。
宋米荣
数据是本项目成员自主研发的气候系统模式FGOALS对北极海冰密集度和海冰覆盖范围进行预测的结果。同化技术的正确选取,是北极海冰预测的重要因素,在海冰资料同化技术中,奇异值演化插值卡尔曼滤波(简称SEIK),是发展相对较早但是仍很常用的一种滤波算法,但由于计算所有格点之间的误差协方差,存在虚假的遥相关误差,因此考虑发展局部滤波方法,对海冰密集度和海冰厚度进行同化。本项目将在气候系统模式FGOALS 中,初始化处理欧洲航天局(ESA)CryoSat-2 和Soil Moisture and Ocean Salinity(SMOS)卫星遥感反演的海冰厚度数据。
宋米荣
(1)数据内容:过去千年三极(北极、南极、青藏高原)降水场数据集(precipitation anomaly based on the millinnial mean);(2)数据来源及加工方法:该数据由作者自主生产,通过古气候数据同化方法同化三极地区降水代用资料而生产;(3)数据质量描述:该数据集和多个器测的降水数据集之间具有高度的时空一致性(相关系数在0.35以上,p<0.001; 纳什效率系数在0.3以上)。此外,和多个基于代用资料重建的降水数据序列之间的相关系数在0.2-0.6之间(p<0.001);(4)可用于三极地区过去千年降水时空变化研究。
方苗
(1)数据内容:过去千年三极(北极、南极、青藏高原)温度场数据集,温度为近地面温度(near-surface air temperature anomaly based on the millinnial mean);(2)数据来源及加工方法:该数据有作者自主生产,通过古气候数据同化方法同化三极地区温度代用资料而生产;(3)数据质量描述:该数据集和多个器测的温度数据集之间具有高度的时空一致性(相关系数在0.6以上,p<0.001; 纳什效率系数在0.5以上)。此外,和多个基于代用资料重建的温度数据之间的相关系数在0.4-0.8之间(p<0.001);(4)可用于三极地区过去千年温度时空变化研究。
方苗
近年来,随着南极冰盖消融的加速,冰盖2000-2019表面形成大量冰面融水。深入理解南极冰盖冰面融水的时空间分布与动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集基于2000-2019年30m空间分辨率Landsat7和Landsat8影像,利用归一化水体指数、Gabor滤波和形态学路径开操作,生成冰面融水栅格数据集,在ARCGIS中将栅格水体掩膜转换为矢量数据。本数据集是基于Landsat影像提取的2000-2019年南极冰盖消融区(南极半岛亚历山大岛)250m冰面融水数据集。时间集中在每年12月至次年2月(南半球夏季)
杨康
根据 CMIP5 3 个未来情景(RCP2.6、RCP4.5、RCP8.5)资料,获得了 2006-2100 世纪全球年平均气温的空间分布。经分析发现在 RCP2.6 情景下,年平均气温呈现增长的趋势,增长率介于 0.0 °C/decade 至 0.2 °C/decade 之间(P<0.05),其中,高纬度地区增长较快,介于 0.1 °C/decade 至 0.2 °C/decade之间。综合 21 世纪全球年平均气温空间和时间变化特征,年平均气温在不同的气候情景下都呈现出变暖的趋势,高纬度地区年平均气温呈现出更加敏感和快速的增长。
牛富俊
根据泛北极潜在热融灾害(主要为热融滑坡)诱发因素,包括:气温(冻融环境)、降雨、积雪、土壤类型、地形地貌及地下含冰量等,基于地球大数据资源库提供的基础数据,采用机器学习方法(逻辑回归、随机森林、人工神经网络、支持向量机等),以目前已有解译北半球热融滑坡为训练样本,最终获得了泛北极的热融灾害易发性(发生概率)区划图。根据驱动因素敏感性发现气候因素(气温与降雨)对热融灾害的发生于分布贡献度最大,坡度因素贡献度次之,含冰量与辐射也具有较高的贡献。
牛富俊
对于泛北极或北半球,通常使用冻融指数来预测多年冻土分布,活动层厚度及气候变化信息等。因此,结合加拿大气象中心提供的分辨率为25km月平均雪深数据,该数据基于CRUNCEP冻融指数利用雪深修正后的冻结数模型预测了泛北极多年冻土分布范围。考虑到雪深数据始于1998年而冻融指数止于2015年。所以模拟了2000-2015年的冻土分布状况。尽管国际雪冰数据中心(NSIDC)提供的泛北极多年冻土图也可以反映多年冻土的分布范围,但不能反映气候变暖背景下2000年之后的多年冻土分布状况。通过模拟得到的2000 – 2015年泛北极多年冻土面积为19.96×106 km2。和已有国际雪冰数据中心提供的多年冻土分布图不一致的地方主要位于岛状多年冻土区。
牛富俊
1990-2020年全球高分辨率模拟近海洋表层气温-降水-海温数据集来源于最新CMIP6计划。CMIP6是世界气候研究项目(WCRP)组织的第六次气候模式比较计划。原始数据来源于https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6。该数据集中包含了全球近海洋表层气温(tmp)、降水(pr)和海温(tos)数据。其中气温和降水数据包含CMIP6中情景模式比较子计划(ScenarioMIP)的4种不同实验场景的共享经济路径(shared socioeconomic pathway, SSP)与辐射强迫(representative concentration pathway, RCP)的矩形组合。(1) SSP126: 在SSP1(低强迫情景)基础上对RCP2.6情景的升级 (辐射强迫在2100年达到2.6W/m2)。(2) SSP245: 在SSP2(中等强迫情景)基础上对RCP4.5情景的升级 (辐射强迫在2100年达到4.5 W/m2)。(3) SSP370: 在SSP3(中等强迫情景)基础上新增的RCP7.0排放路径 (辐射强迫在2100年达到7.0 W/m2)。(4) SSP585: 在SSP5(高强迫情景)基础上对RCP8.5情景的升级(SSP585是唯一能使辐射强迫在2100年达到8.5 W/m2的SSP场景)。海温数据提供SSP126情景数据。
叶爱中
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: Distributed Time—Variant Gain Hydrological Model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上,实际蒸发模拟同气象局公开的站点观测基本一致。模型模拟出1998-2017年水循环过程,经过验证之后,给出全青藏高原空间0.01度日尺度实际蒸发(包含土壤蒸发和植物蒸腾)时空分布。
叶爱中
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: distributed time-variant gain model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上。模型模拟出1998-2017年水循环过程,给出全青藏高原空间0.01度日尺度径流时空分布。
叶爱中
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
为了更好地了解全球气候与 Fimbu与Jelbart 冰架相互作用的机理,获取该区域长时间的冰流速变化至关重要。1960s-1980s东南极Fimbul-Jelbart冰架冰流速度场数据产品集:使用早期的Argon、 Landsat MSS和TM卫星影像,基于对早期遥感影像进行预处理获得精密几何地位的正射影像,提出了人工点-特征点-格网点的三角网约束策略下的分层匹配方法,提取了东南极Fimbul-Jelbart冰架区域的历史冰流速度场数据产品。本研究对于研究东南极Fimbul-Jelbart冰架1963-1987年间历史冰流速具有重要意义,可为研究冰盖对全球气候变化的响应提供基础数据。
李荣兴, 冯甜甜, 李雁君, 程远, 乔刚
太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。
白建辉
1963年东南极Rayner冰川基于ARGON历史遥感影像的冰流速度场数据产品。利用间隔两个月的两张1963年拍摄的解密卫星影像,基于视差分解进行分层匹配,估算了南极洲东部雷纳冰川的早期冰流速度场。估算得到速度图的精度可达到70米/年。基于光学立体像对视差分解的协同冰川表面流速估算方法。首先对待匹配影像生成核心影像,并生成核心影像的金字塔;接下来使用冰流区域掩膜,将影像分为冰流区与非冰流区分别进行匹配,其中冰流区除正常匹配步骤外,还需要进行视差分界,从而区分冰流运动对于地形视差的影响。最终通过逐层匹配的方法,我们可以在底层得到物方的DTM及冰流图。本数据对于重建东南极Rayner冰川早期表面形态及其冰流速度具有重要意义。
李荣兴, 乔刚, 叶文凯
气溶胶光学厚度(Aerosol Optical Depth,AOD)反映到达地表的太阳辐射受气溶胶的衰减程度,气溶胶类型根据气溶胶光学厚度AOD计算得到。本数据集来源于最新MODIS气溶胶二级产品MOD04_L2和MYD04_L2,其中 MOD 和 MYD 分别代表 Terra 和 Aqua 卫星。目前,MODIS反演气溶胶算法分别为暗目标算法(Dark Target,DT)和深蓝算法(Deep Blue,DB)。根据元数据字段表Quality Assuracne Confidence(QAC)反演精度,融合DT和DB算法产品,分别处理陆地、海洋和海岸等,索引质量最优(QAF=3)或次优(QAF=2)或满足基本需求(QAF=1),得到全覆盖、长时间序列的高分辨率AOD产品(0.1度,日尺度)。按照AOD经验阈值(AOD:0~0.2,清洁型;0.2~0.6,城市或工业型;大于0.6,沙尘型。)分类将气溶胶类型标记为三种:清洁型(1)、城市或工业型(2)和沙尘型(3)。本数据集提供MOD,MYD以及根据过境时间得到的融合产品。
叶爱中
气溶胶光学厚度(Aerosol Optical Depth,AOD)反映到达地表的太阳辐射受气溶胶的衰减程度。本数据集来源于最新MODIS气溶胶二级产品MOD04_L2和MYD04_L2,其中 MOD 和 MYD 分别代表 Terra 和 Aqua 卫星。目前,MODIS反演气溶胶算法分别为暗目标算法(Dark Target,DT)和深蓝算法(Deep Blue,DB)。根据元数据字段表Quality Assuracne Confidence(QAC)反演精度,融合DT和DB算法产品,分别处理陆地、海洋和海岸等,索引质量最优(QAF=3)或次优(QAF=2)或满足基本需求(QAF=1),得到全覆盖、长时间序列的高分辨率AOD产品(0.1度,日尺度)。本数据集提供MOD,MYD以及根据过境时间得到的融合产品。
叶爱中
《2015年第三极部分湖泊水体细菌后处理产品和常规水质参数》数据集收集了2015年期间青藏高原地区部分湖泊水体采样细菌分析结果和常规水质参数。通过整理归纳汇总得到2015年第三极部分湖泊水体细菌后处理产品,数据格式为excel,方便用户查看。样品由计慕侃老师采集于2015年7月1日至7月15日,包含28个湖泊(巴木错,白马纳木错,班戈错(盐湖), 班公错,崩错,别若则错,错鄂(申扎),错鄂(那曲),达瓦错,当穹错,当惹雍错,洞错,鄂雅错,公珠错,果根错,甲热布错,玛旁雍错,纳木错,聂尔错(盐湖),诺尔玛错,朋彦错(盐湖),蓬错,枪勇错,色林错,吴如错,物玛错,扎日南木错,扎西错),共计138个样品。其中湖泊水体细菌DNA提取方法如下:湖水过滤到0.45膜上,然后通过MO BIO PowerSoil DNA试剂盒提取DNA。16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。测序方式为Illumina MiSeq PE250,原始数据通过Mothur软件分析,包括quality filtering, chimera removal,序列分类依据Silva109数据库,古菌、真核和未知来源序列已被移除。OTU以97%相似度分类,然后移除仅在数据库中出现一次的序列。常规水质检测参数包括:溶解氧、电导率、溶解性总固体、盐度、氧化还原电位、不挥发有机碳、总氮等。其中,溶解氧采用电极极谱法;电导率采用电导率仪;盐度采用盐度计;溶解性总固体采用TDS测试仪;氧化还原电位采用ORP在线分析仪;不挥发有机碳采用TOC分析仪;总氮采用分光光度法分别得到水质参数结果供参考。
叶爱中
该数据集包含北极两条大河 (北美:Mackenzie,欧亚:Lena)的观测及模拟的入海径流量及各径流成分(总径流、冰川径流、融雪径流、降雨径流)的组成,时间分辨率为月。该数据是利用项目组制作的气象驱动场数据驱动发展的VIC-CAS模型,利用观测的径流及遥感积雪数据进行校正,径流的模拟的Nash效率系数达到0.85以上,模型也能较好地模拟积雪的空间分布和年内、年际变化。 该数据可用于分析长期的流域径流的组成及变化原因,加深对北极大河径流变化的理解。
赵求东, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1971-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为0.1degree,时间分辨率为月。该数据集可用于长期气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1998-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为50km,时间分辨率为月。该数据集可用于气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件