本数据集来源于书籍:《横断山区冰川》,该书籍的归属于青藏高原横断山区科学考察丛书,主编为李吉均,副主编为苏珍,指导单位为中国科学院地理研究所。该书所指考察队为中国科学院青藏高原综合考察队,出版社为科学出版社。由于横断山一些地区,降水充沛,积雪深厚,雪崩、风吹雪和异常降雪成为一种常见的自然灾害,给当地居民的工作与生活造成了极大的伤害,本书就此对于横断山地区的雪害进行了详细的记录。该数据包含了2张工作簿和2张图片,分别是雪害状况及危害程度统计表、雪崩的区域特征、川西滇北藏东南地形切割程度图、横断山雪崩危害范围图。
李吉均
该数据集记录了全国各地区人均GDP和增长率及排序(2010-2018)的统计数据,数据是按年份进行划分的。数据整理自青海省统计局发布的青海省统计年鉴。数据集包含8个数据表,各数据表结构相同。例如2017-2018年的数据表共有4个字段: 字段1:地 区 字段2:数 量 字段3:位 次 字段4:增长率
青海省统计局
横断山冰川的消融观测,主要在贡嘎山东坡海螺沟冰川和贡嘎山西坡大、小贡巴冰川上进行。另外,在玉龙山东坡白水1号冰川上也作了一些消融观测。从上述两条山脉四条冰川的消融观测来看,还是有一定的区域代表性,使它们反映出横断山冰川消融的基本情况。本数据集记录了不同时间不同地点观测点的冰川消融数据:1982 年6-8月,玉龙山东坡白水1号冰川海拔4200m、4 600m和4800m三个高度的冰面消融观测数据。1982 年8月27日至1983 年8月底,贡嘎山东坡海螺沟冰川舌部不同高度的全年实测数据。1982年7月12日至1983年8月6日,贡嘎山西坡贡巴冰川消融观测数。
李吉均
该数据集为可可西里地区冰川分布状况记录,包含了可可西里地区各山地现代冰川分布状况,可可西里地区各流域现代冰川分布, 可可西里地区不同山地高度段内现代冰川分布状况三个表格。地处青藏高原腹地的可可西里地区,平均海拔在5000m以上,气候严寒。根据中国冰川目录和作者在1/10万地形图上重新统计,全区发育现代冰川437条,覆盖面积达1552.39平方千米,冰储量为162.8349立方千米,成为本区众多河流湖泊水体的重要补给源泉。通过该数据集可以更加深入了解该区冰川分布规律等。
李炳元
全面了解青藏高原多年冻土发生的变化,包括年平均地温(MAGT)和活动层厚度(ALT)的变化,对气候变化引起的多年冻土变化工程的实施具有重要意义。 青藏高原多年冻土活动层厚度和范围模拟数据集,参考2000-2015年CMFD再分析数据及中国气象局气象观测资料、1公里数字高程模型、地理空间环境预测因子、结合冰川和冰湖、钻孔数据等,利用统计和机器学习(ML)方法模拟了青藏高原多年冻土层磁通量和磁通量的当前和未来变化,得到RCP2.6、RCP4.5和RCP8.5三种不同浓度情景下2000-2015、2061-2080年平均地温(MAGT)和活动层厚度(ALT)范围数据,分辨率为0.1*0.1度。 模拟结果表明,利用统计和ML相结合的方法模拟冻土热状态所需的参数和输入变量较少,可以有效地了解青藏高原冻土对气候变化的响应。
倪杰, 吴通华
采用计算草地实际净初级生产力,CASA模型是一种光能利用率模型,生产力的估算主要由植物吸收的光合有效辐射(APAR)与光能转化率(ε)2个变量决定。植被所吸收的光合有效辐射(APAR)取决于太阳总辐射和植被对光合有效辐射的吸收比例;采用TEM(Terrestrial Ecosystem Model)模型计算草地潜在生产力,首先计算草地的总初级生产力(GPP),再计算植物自养呼吸(Ra),最后得出草地净初级生产力(NPP)。TEM模型是气候驱动的生产力模型,所需的参数有:植被类型、土壤质地、土壤水分、潜在蒸散、太阳辐射、云量、降水、温度和大气CO2浓度;利用随机森林算法(RF)计算青藏高原草地潜在地上生物量,预测变量包含气候、土壤、地形等14个变量。气候变量包含生长季(5-9月)平均日较差、生长季总降水、生长季平均温度和非生长季(前一年10 - 当年4月)平均日较差、非生长季总降水、非生长季平均温度。地形变量包括高程、坡度、坡向。土壤变量包含土壤质地(砂、粉、粘土含量)、土壤pH值和土壤有机碳。 实际净初级生产力和潜在净生产力数据年限为2000-2017;潜在草地地上生物量数据年限为(2014-2018)。
牛犇, 张宪洲
夜间灯光遥感(以下简称夜光)已经成为反映包括社会经济和能源消耗在内的人类活动的一个越来越重要的指标。现有夜光数据集(如美国国防气象卫星计划(DMSP)和国家极地轨道可见光红外成像辐射计(NPP))在时间范围和数据质量上都很有限。因此我们提出了一种夜间灯光卷积长短期记忆(NTLSTM)网络,并将该网络应用于生长出世界上第一套1984 - 2020年中国的人工夜间灯光数据集(PANDA)。模型与原始图像的模型评估显示,平均均方根误差(RMSE)达到0.73,决定系数(R2)达到0.95,像素级的线性斜率为0.99,表明生成产品的数据质量较高。模型结果可以很好地捕捉到新建成区的时间趋势。社会经济指标(建成区面积、国内生产总值、人口)与PANDA的相关性比现有的所有产品都更好,这表明它在寻找不同阶段夜间灯光变化的不同控制方面有更好的潜力。此外,PANDA描绘了不同的城市扩展类型,在代表道路网络方面胜过其他产品,并在早期提供了潜在的夜光景观。
张立贤, 任浙豪, 陈斌, 宫鹏, 付昊桓, 徐冰
本数据集为青藏高原区域2016年日分辨率0.02° x0.02° BRDF 核驱动模型核系数数据集。采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF。MODIS地表反射率数据及AHI天顶反射率数据集为官方网站下载,经过配准、大气校正等处理,以5天为周期合成日分辨率BRDF。相较于同类产品,,该BRDF合成周期最短,且考虑了地形效应,对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑j反射率角度效应订正、或用于与BRDF相关地表参数的高精度估算。
闻建光, 唐勇, 游冬琴
该数据集包含纳木那尼冰川(北支)2008-2018年的年物质平衡数据,侧碛和末端自动气象站2011-2019年日气象数据及冰面上2018-2019年的月均气温和相对湿度数据。 冰川物质平衡数据观测时间为每年9月底或10月初,采用冰面测杆和雪坑结合的方法进行观测,获取测杆点的物质平衡数据,然后计算整条冰川的年净物质平衡(具体方法见参考文献)。 2台自动气象站(AWSs,Campbell公司)分别安装在纳木那尼冰川侧碛和末端。AWS1观测时间为2011年10月1日-2018年11月30日,观测数据包括气温(℃)、相对湿度(%)、太阳辐射(W/m2),仪器半小时记录一次气象资料。AWS2观测时间为2010年10月19日-2018年11月30日,观测数据包括风速(m/s)、大气压(hPa)、降水 (mm),仪器每小时记录一次气象资料。首先剔除原始记录中的少量异常数据,然后计算这些参数的日值。数据质量方面:原始数据质量较好,缺失较少。 两个温湿度探头(型号:Hobo MX2301)于2018年安装于冰面,半小时记录一次数据。将半小时数据处理为月均值。原始数据质量较好,没有缺失。 数据以excel文件存储。 该观测资料可以为研究喜马拉雅西段北坡气候、冰川、水资源及其之间的关系提供重要的基础数据,可供研究气候、水文、冰川等的科研工作者使用。
赵华标
现代花粉与植被和气候的关系是利用花粉定性解释和定量重建过去植被和气候的重要参考依据。提取湖泊沉积物中的花粉组合所蕴含的古植被和古气候信号,需要组建一个高质量的湖泊表层沉积物现代孢粉数据集。然而,青藏高原已有的湖泊表层沉积物花粉数据集并不能很好地代表其植被类型和气候梯度,仍存在空白区域,如青藏高原中东部的高寒草甸区尚缺乏现代湖泊花粉数据,影响了重建研究的可靠性。 为了构建高寒草甸区样点空间分布均匀的现代孢粉数据集,作者于2018年7月~8月采集了青藏高原中部和东部117个湖泊的表层沉积物样品。每个样品选取约10克(湿样)采用常规酸碱法和过筛法(7 μm)提取花粉。每个花粉样品至少鉴定、统计500粒陆生植物花粉粒。 本高寒草甸现代花粉数据集花粉组合以莎草科花粉为主(Cyperaceae;平均值68.4%,最大值95.9%),其他草本植物花粉如禾本科(Poaceae;平均值10.3%,最大值87.7%)、毛茛科(Ranunculaceae;平均值4.8%,最大值33.6%)、蒿属(Artemisia;平均值3.7%,最大值24.5%)、菊科(Asteraceae;平均值2.1%,最大值33.6%)等为常见花粉类型。柳属(Salix;平均值0.4%,最大值5.3%)为主要的灌木植物花粉,而乔木植物花粉含量低(平均值0.9%,最大值5.8%),主要包括松属(Pinus;平均值0.3%,最大值1.8%)、桦属(Betula;平均值0.1%,最大值0.9%)和桤木属(Alnus;平均值0.1%,最大值0.7%)。花粉组合尽管受到远源花粉(如乔木花粉)的影响,但仍能很好地代表高寒草甸植物群落组成。 本数据集除包含花粉类型的原始统计数据和百分比数据,也包括每个采样点现代气候数据。每个样点现代气候数据采用中国区域地面气象要素驱动数据集(1979-2018;0.1°空间分辨率)中最近栅格数据代替,并计算样点的年降水量(Pann)、年均气温(Tann)、最冷月均温(Mtco)和最热月均温(Mtwa),用于构建花粉-气候校准集。
曹现勇, 田芳, 李凯, 倪健
整编了目前北半球数量最多的年平均地温(1002个)和活动层厚度(452个)地面观测数据,利用四种统计学习模型融合这些地面观测与多源遥感等数据产品,集合模拟得到了代表2000-2016年北半球多年冻土区年平均地温、活动层厚度、多年冻土发生概率和多年冻土水热分带数据集,空间分辨率为1公里,验证表明具有更高的精度。可为北半球多年冻土区的工程规划、设计、环境模拟与评价等提供数据支持,也可作为北半球多年冻土现状的数据基准,评估未来多年冻土变化及其影响。
冉有华, 李新, 程国栋, 车金星, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, 金会军, Jaroslav Obu, Masahiro Hori, 俞祁浩, 常晓丽
本数据集包括2010、2015和2020年间,中亚地区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的植被覆盖度(FVC)数据。该数据由MODIS-NDVI数据集(产品编号MOD13A2.006),根据干旱区植被盖度与NDVI之间的经验关系计算得到。该产品时间分辨率为1年,空间分辨率1 km。算法从当年所有观测数据中,以低云、低探测角度和最高NDVI值为标准,选择最佳的可用像元值,并进行换算。
徐晓凡, 谈明洪
本数据采用Chen et al. 2017 JHM研究的方法,利用MYD11C3.006和MOD11C3.006两种产品计算得到全天空的地表温度结果,具体计算程序见本数据集的Global_monthly_LST.m。数据格式为*.mat, Global_monthly_LST.m程序给出了实例如何读取该数据。该数据空间分辨率为0.05度,网格中心的经纬度信息分别保存在latitude.mat和Lonitud.mat,由于内陆湖泊、水体的发射率反演的问题,本数据将所有内陆湖泊和水体的地表温度给了NaN值,具体采用的mask见mask.mat文件。经过与全球156个站点观测的LST的验证,总体RMSE为2.69k,mean bias为0.4K,在干旱和半干旱地区的RMSE为2.62K, mean bias为0.94.K.
陈学龙, Bob Su, 马耀明
吉尔吉斯斯坦西天山Kara-Batkak冰川气象站(42°9'46″N,78°16'21″E,3280m)。 观测数据包括逐时气象要素(小时雨量(mm)、瞬时风向(°)、瞬时风速(m/s)、2分钟风向(°)、2分钟风速(m/s)、10分钟风向(°)、10分钟风速(m/s)、最大风速时风向(°)、最大风速(m/s)、最大风速时间、极大风速时风向(°)、极大风速(m/s)、极大风速时间、分钟内极大瞬时风速风向(°)、分钟内极大瞬时风速(m/s)、气压(hPa)、气压最高(hPa)、气压最高出现时间、气压最低(hPa)、气压最低出现时间)。 气象观测要素,经过积累和统计,加工成气候资料,为农业、林业、工业、交通、军事、水文、医疗卫生和环境保护等部门进行规划、设计和研究,提供重要的数据。
霍文
全面估算了1132个大于1 km2湖泊的水量变化。总的来说,1976至2019年间,湖泊水储量增加了169.7±15.1 Gt(3.9±0.4 Gt yr-1),主要发生在内流区(157.6±11.6或3.7±0.3 Gt yr-1)。1976至1995年间,湖泊水量显示减少(-45.2±8.2Gt或-2.4±0.4Gt yr-1),但在1995至2019年间,大幅增加(214.9±12.7Gt或9.0±0.5Gt yr-1)。2010至2015年间,水量增速减缓(23.1±6.5 Gt或4.6±1.3 Gt yr-1),随后在2015至2019年间再次出现高值(65.7±6.7 Gt或16.4±1.7 Gt yr-1)。在1976-2019年间,冰川补给湖水量增加(127.1±14.3 Gt)远远高于非冰川补给湖(42.6±4.9 Gt),这也与冰川补给湖数量多,面积广有关。另外,封闭湖水量增幅(161.9±14.0 Gt)大大高于外流湖(7.8±5.8 Gt)。
张国庆
本数据为阿姆河上游支流卡菲尼干河水文站水文资料。该站为中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题水能与生态研究所、塔吉克斯坦水文气象局合作建设。该数据可以用于中亚山区水资源评估等科学研究和水利工程等服务。资料时段:2019年11月3日至2020年12月3日。资料要素:逐小时流速(m/s)、逐小时水位(m)和逐小时降雨量(m)。站点位置:37°36′01″N,68°08′01″E,420m 一、300W-QX河流流速、水位观测仪 (一)流速参数: 1供电电压 12(9~27)V(DC) 2工作电流 120(110~135)mA 3工作温度(-40 ~85) °C 4测量范围 (0.15 ~20)m/s 5测量精度 ±0.02m/s 6分辨率 1mm 7探测距离 0.1~50 m 8安装高度0.15~ 25 m 9采样频率 20sps (二)水位参数: 1测量范围 0.5~20 m 2测量精度 ±3 mm 3分辨率 1 mm 4重复性 ±1mm 二、SL3-1翻斗式雨量传感器 1承水口径 ф200mm 2测量降水强度 4mm/min以内 3测量最小分度 0.1mm降水量 4最大允许误差 ±4%mm 三、流速、观测仪数据获取的频率:传感器每隔5S测量一次流速和水位数据 四、小时平均流速计算:小时平均流速和水位数据由一小时内所有每隔5S测量的流速和水位数据取平均计算得出 五、水位数据中大量出现的0值的说明:水位数据中0值是供电不足引起传感器断电重启,初次启动第一条数据是0,导致小时平均值出现0。经2020年7月26日供电改造后,数据恢复了正常,2020年9月底又开始出现供电不足,经2020年12月25日二次供电改造,数据恢复正常 六、水位监测情况进行说明(如7358行,2020/11/3 16:00,最高水位6.7m,最低水位为0m,如何解释?另,最高水位的最大值是6.7m,数据中多次出现这个最高水位的值,似乎显示了6.7m是监测数据的极限值,实际情况是否如此? ):6.7m是设置的初始传感器距离河床底部高度,出现6.7m是传感器刚启动时候的异常数据,是设备供电不足导致断电重启引起传感器重启,初次启动出现这种异常值,经2020年12月25日供电改造后,数据恢复了正常
霍文, 尚华明
基于1980-2019年青藏高原及附近105个气象站点的气象数据(数据源于中国气象局数据国家气象科学数据中心)计算含氧量,发现含氧量和海拔显著线性相关,y=-0.0263x+283.8,R2=0.9819。因此基于DEM数据栅格计算得到含氧量分布图。由于青藏高原地区自然环境的限制,相关定点观察机构较少,本数据可在一定程度上反应青藏高原地区含氧量的分布情况,对青藏高原人类生存环境等相关研究有一定的借鉴意义。
信忠保
本数据集以大量的地面实测草地地上生物量数据为基础,以1980s中国植被类型图划分出温性草地类型,借助Google Earth Engine平台上的Landsat遥感数据,在不同草地类型分别构建了草地地上实测生物量-遥感数据的随机森林模型,在验证可靠的基础上,对1993~2019年间逐年的草地地上生物量进行了估算,从而形成了1993~2019年中国北方温性草地地上生物量的逐年空间数据集。地上生物量定义为单位面积内地面以上实存生活的植被有机物质总量。已对原有栅格值乘以系数100,单位:0.01克/平方米(g/m²)。本数据集可为中国北方温性草地资源、生态环境的动态监测和评价提供科学基础。
张娜
大气海洋高频非潮汐去混频产品(简称去混频产品)是GRACE和GRACE-FO重力卫星解算地球时变重力场的关键背景模型之一。目前,国内外重力卫星反演团队均依赖于德国地学中心定期发布的去混频产品AOD1B,该产品的输入数据主要源自欧洲中长期气候预报中心(ECMWF)发布的大气驱动场。我们基于ECMWF最新发布的ERA5大气再分析驱动场和改进的大气质量积分算法,独立研制了一套大气去混频产品HUST-ERA5,并于国内外首次实现了1小时的时间分辨率,球谐展开为100阶,覆盖2002年至今长达19年的时间跨度(重力卫星的完整生命周期),但需要注意的是,本产品目前仅包含大气分量。具体的,本产品所采取的ERA5数据集是当前最高时空分辨率气象再分析数据集之一,其水平分辨率大约为0.25度,垂直分辨率高达137层,时间分辨率由6小时大幅提升至1小时。此外,本文不仅联合垂直积分和水平积分实现了国际最新AOD1B第六版的完整计算过程,并且通过真实重力场延拓方法进一步改进了物理模型、利用温湿插值方法进一步精化了垂直分层,该改进算法用于本产品的计算。通过多组对比实验证明,HUST-ERA5在3小时分辨率尺度上完全达到了国际AOD1B第六版的精度水平,并且在长期稳定性上呈现更优的表现。在1小时尺度上,HUST-ERA5反映在重力场反演中可进一步削弱星间测距误差,对于下一代重力卫星设计具有重要的参考意义。此外,HUST-ERA5去混频产品亦可广泛运用于低轨卫星定轨以及超导重力仪大气改正等等领域。
杨帆, 罗志才
本数据集包括南极冰盖花杆、冰(雪)芯/雪坑、自动气象站高度仪和探地雷达观测的日平均、年平均和多年平均表面物质平衡数据。数据来自已发表的文献,数据报告及国际数据共享平台,经质量控制后,形成了到目前为止最为完善的南极冰盖表面物质平衡日、年和多年分辨率的数据集,其中年分辨率表面物质平衡数据跨度过去1000年。该数据集主要用于冰川学、气候学及水文学等学科领域,特别地可用于南极表面物质平衡时空变化定量分析,气候模式验证,驱动冰盖模式和粒雪化模型等等。
王叶堂
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件