从2006年开始,中国地质调查局组织实施了“青藏高原基础地质调查成果集成和综合研究”工作,以青藏高原空白区1:25万区域地质调查和国内外最新研究成果的基础上,通过集成和综合研究,编制的系列图件之“青藏高原及邻区1:150万地质图”。图件由《地质出版社》出版,基于177幅1:25万区域地质调查成果资料,系统厘定了区域地层及构造-地层系统,划分出9个地层及构造-地层大区、36个地层及构造-地层区及63个地层及构造-地层分区,建立了青藏高原及邻区岩石地层划分与对比序列。表达了大量地质演化过程及青藏高原隆升的地质记录,集中展示了地质调查与研究的新发现、新进展和新认识。数据采用等角割圆锥投影,第一标准纬度28°,第二标准纬度37°,中央经线89°,投影原点纬度为北纬26°。 本数据是使用高分辨率扫描仪,将纸质图件《青藏高原及邻区1:150万地质图》进行扫描而得,并将分副地图进行了拼接,在扫描过程中最大可能的保持地图图面的平整等以减小误差。图件版权归出版社所有。本数据可以服务于从事青藏高原地质地貌等相关研究的人员,可以为青藏高原区域资源勘查、地质科学研究、重大工程设施建设、环境保护与灾害防治等方面服务。
地质出版社
从2006年开始,中国地质调查局组织实施了“青藏高原基础地质调查成果集成和综合研究”工作,在青藏高原空白区1:25万区域地质调查和国内外最新研究成果的基础上,通过集成和综合研究,编制了系列图件之“青藏高原及邻区1:150万大地构造图”。图件由《地质出版社》出版,按照大地构造相划分方案(3个大相、18个基本相和36个亚相)对地质体进行大地构造环境解析,以36个大地构造亚相作为基本编图单元,编制青藏高原及邻区大地构造图。数据采用等角割圆锥投影,第一标准纬度28°,第二标准纬度37°,中央经线89°, 投影原点纬度为北纬26°。 本数据是使用高分辨率扫描仪,将纸质图件《青藏高原及邻区1:150万大地构造图》进行扫描而得,并将分副地图进行了拼接,在扫描过程中最大可能的保持地图图面的平整等以减小误差。图件版权归出版社所有。本数据可以服务于从事青藏高原地质地貌等相关研究的人员,可以为青藏高原区域资源勘查、地质科学研究、重大工程设施建设、环境保护与灾害防治等方面服务。
地质出版社
三极冰芯数据主要来源于美国国家海洋与大气局(NOAA: National Oceanic and Atmospheric Administration, https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core )。原始数据主要是文本格式,由相关单位与研究人员志愿提供。数据主要包含了氧同位素、温室气体浓度、冰芯年龄、等原始观测数据,也包含研究者根据观测数据生产的历史气温、二氧化碳浓度、甲烷浓度等。数据主要分为南极、北极、格陵兰岛及第三极区域。数据库包含打钻地址、时间、衍生产品、对应观测站点数据、参考文献等要素。衍生产品包含产品名称、类型、时间等要素。空间位置分为南极、北极、第三极,包含阿拉斯加、加拿大、俄罗斯、格陵兰岛等地区。对收集的数据通过整理与后处理后,采用Microsoft Office自带的Access数据库管理系统建立冰芯数据库。按照南极、北极、格林兰岛、第三极,分成四个子数据库,打开每个数据库中第一个表为readme,该表包含每个数据表信息及参考文献。
叶爱中
海冰是海洋表面海水冻结形成的冰,海冰表面的降水再冻结也成为海冰的一部分。海冰变化不仅影响海洋的层结、稳定性及对流变化,甚至影响大尺度的温盐环境。此外,由于海冰的高反照率和绝缘隔热作用,能改变极区表面的辐射状态,影响海-气之间的能量和物质交换。海冰的变化不仅影响局地海洋生态环境和局地的大气环境,而且通过复杂的反馈过程,以遥相关方式影响其他区域的天气和气候。本数据集通过评估,提交了包括了极地海冰相关的四个参数:海冰密集度、范围、厚度和反照率。为研究极地及全球气候变化提供基础。
邱玉宝
本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。
王磊
近地表土壤的冻结/融化状态表征着陆地表层过程的休眠和活跃,这种冻融相态交替能引起一系列复杂的地表过程轨迹模式突变,影响着土壤的水热特性、地表径流和地下水补给等水循环过程,同时也通过水和能量循环机制影响气候变化。本数据集是基于AMSR-E、AMSR2被动微波亮温数据,以及MODIS光学遥感数据,利用冻融判别式算法和冻融降尺度算法制备的全球近地表冻融状态(空间分辨率:0.05°;时间跨度:2002-2017年),可用于分析全球近地表冻融循环的开始/结束日期、冻结/融化时长、冻结范围等指标的空间分布和趋势变化,可为理解全球变化背景下陆表冻融循环与水分、能量交换过程的相互作用机制提供数据支持。
赵天杰, 张子谦
本项目是基于东天山庙尔沟冰芯(94°19′E,43°03′N,4518 m)生物活性元素Fe等元素数据,重建了1956-2004金属元素历史。数据内容:1956-2004年冰芯金属元素(包括:Fe, Cd, Pb, As, Ba, Al, S, Mn, Co和Ni);数据来源,通过ICP-MS测试;数据质量:空白样品显著低于样品值,质量较好;数据应用成果及前景:数据已发表,具体信息见Du, Z., Xiao, C., Zhang, W., Handley, M. J., Mayewski, P. A., Liu, Y., & Li, X. (2019). Iron record associated with sandstorms in a central Asian shallow ice core spanning 1956–2004. Atmospheric environment, 203, 121-130.,可提供中亚其他冰芯对比研究。
杜志恒
冰川对区域和全球气候变化异常敏感,因此常被作为气候变化的指示器之一,其相关参数也是气候变化研究的关键指标,特别是在地球三极环境变化对比研究中,冰川速度的时间和空间差异性对比是气候变化研究的重点之一。但由于冰川基本位于高海拔、高纬度和高寒地区,自然环境恶劣、人迹罕至,缺乏且难以开展大规模冰川运动的常规现场测量工作,为了能够及时高效、全面和准确地了解三极地区冰川运动状况,利用雷达干涉测量、雷达和光学影像像素跟踪等方法获取了三极地区部分典型冰川2000-2017年部分年份的表面运动分布情况,为三极冰川运动的对比分析提供了基础资料。数据集包含12个栅格文件,栅格文件名为“某地区某时段冰川运动”,每一幅栅格图主要包含以某一典型冰川所在的区域流速分布。
闫世勇
本产品基于多源遥感DEM数据生成,步骤如下:以Landsat ETM+、SRTM 和ICESat遥感数据为参考在相对稳定和平坦的地形区域内选控制点。控制点水平坐标是以Landsat ETM+ L1T全色影像作为水平参考进行获取。控制点的高度坐标则主要通过ICESat GLA14高程数据进行获取,在无ICEsat分布的区域内以SRTM高程数据补充。利用选取的控制点和自动生成的连接点,通过Brown’s物理模型对透镜畸变和残余形变进行补偿,使得所有立体像对的空中三角测量结果中影像总RMSE<1个像素。为了对提取的DEM数据进行编辑以消除明显的高程异常值,采用了DEM内插、DEM滤波和DEM平滑等方法对冰川上的DEM进行了编辑,并对西昆仑-西和西昆仑-东区域的KH-9 DEM数据进行了拼接,从而形成产品。
周建民
三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
基于WRF模式,以ERA5再分析资料为初始和边界场,通过动力降尺度的方法,初步获得了青藏高原高分辨率低层大气结构和地气交换数据集。该数据集时间范围为2014年8月1日-8月31日,时间分辨率1小时,水平范围25oN-40oN,70oE-105oE,水平分辨率为0.05°。数据格式为NetCDF,每一小时数据输出一个文件,文件以日期命名。低层大气结构数据包含温度、相对湿度、水汽混合比、位势高度、经向风、纬向风气象要素,垂直方向为34层等压面;地气交换数据集包含地表接收的向上/向下短波辐射、向上/向下长波辐射、地表感热和通量、2米气温和水汽混合比、10米风等。该数据集可对青藏高原天气过程和气候环境研究提供数据支撑。
马舒坡
本研究数据主要基于Google Earth Engine大数据云处理平台,选用2017年三江源、普尔河、育空河流域Sentinel-2为基础数据,SRTM-DEM和Global Surface Water为辅助数据,选用AWEIn,AWEIs,WI2015,MNDWI,NDWI等多种水体指数阈值提取的方法,依据年水体频率获得季节水体与永久水体分类数据(空间分辨率10m)。该水体数据产品,为高时空分辨率水体变化和冻土水文分析提供了有效基础数据。
冉有华
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要的指标,但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行了监测,填补了观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集,可以获得这些湖泊不同类型湖冰的分布,数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
邱玉宝, 田帮森
GLObal WAter BOdies database(GLOWABO)数据集,Charles Verpoorter等人基于GeoCoverTM Water bodies Extraction Method利用2000±3年Landsat 7 ETM+影像,获得全球水体数据集。水体提取方法结合主成分分析、阈值提取、纹理特征提取等多种方法,空间分辨率15m,总体精度91%。数据还包括水体面积、周长、形状指数、高程等信息。本数据集选区其中三江源流域、普尔河流域、育空河流三个流域数据集,为北半球极地水文研究提供数据支持。
Charles Verpoorter
“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集采用自主研发的可见光波段遥感反演方法,结合Merra-2模式数据与NASA的官方产品MOD04制作,数据覆盖时间从2000年到2019年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。反演方法主要采用自主研发的APRS算法,反演了冰雪上空的气溶胶光学厚度,算法考虑了冰雪地表的BRDF特性,适用于冰雪上空气溶胶光学厚度的反演。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁
本项目是基于东天山庙尔沟冰芯(94°19′E,43°03′N,4518 m)高氯酸等元素数据,重建了1956-2004高氯酸历史变化。数据内容:1956-2004年高氯酸浓度(包括:Cl-, NO3- 和SO42-);数据来源,通过ESI-MS/MS测试;数据质量:空白样品显著低于样品值,质量较好;数据应用成果及前景:数据已发表,具体信息见Zhiheng Du, Cunde Xiao, Vasile I. Furdui C,Wangbin Zhang. (2019). The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Science of the Total Environment.可提供中亚其他冰芯对比研究。
杜志恒
基于20世纪60年代的锁眼卫星数据,采用面向对象的监督分类,结合人工目视解译修正,生产出水体数据产品。总解译面积64.5万km2,占研究区96.28%,其中三江源研究区影像缺失18844 km2,阿拉斯加育空流域研究区影像缺失4220 km2,西西伯利亚普尔河流域研究区影像缺失1954 km2。解译最小线状地物图上宽度大于8米,最小面状地物图上面积大于100平方米,描迹精度2个象元,一级类解译精度达到95%以上。获取的高空间分辨率水体数据产品,为上世纪70年代水体变化研究提供有效数据,也为冻土变化研究提供可靠依据。
冉有华
冰盖高程变化数据首先利用2004年和2008年的GLAS12的数据获取两年间的重复轨道,在理想情况下每个轨道都是严格重复测量的,但由于轨道偏差,无法保证轨道按照设计严格重复,偏差在几米到几百米不定,取500m*500m的格网,认为落在同一格网内的点为重复轨道的重复点,相减获取2004-2008年的高程变化,获得年度的高程变化。在格陵兰中部地形平缓区域,高程变化较为准确,但在边缘地带,高程变化明显存在较大误差,可能是因为在边缘区域的坡度较大,500m*500m的范围内的点的高程会有较大的变化,因此在边缘区的高程变化有待改正。为对比不同的方法,采用2004年和2008年的GLAS12的春季数据获取这两年间的交叉点,2004年的降轨与2008年的升轨可以获得一组交叉点对应的高程变化;2004年的升轨与2008年的降轨也可以获得一组交叉点对应的高程变化。两组交叉点作为2004年到2008年的高程变化数据,采用克里金插值获得高程变化图。采用交叉点的方法获取的高程变化得到在边缘区域的结果有明显的改善,但在格陵兰东中部部分区域内的高程变化趋势有明显的误差,这些误差可能是季节性变化引起的。因此,采用2004年到2008年的GLAS12的春季数据获取每两年间的交叉点,每两年可以获得两组交叉点数据,总共获得十组交叉点。将这十组交叉点作为2004年到2008年的高程变化数据,与前两次比较发现,高程变化精度有所提高。
黄华兵
河湖冰物候对气候变化敏感,是指示气候变化的重要指示因子。308个Excel文件名称对应于湖泊编号。每个excel文件包含6个列,包含2002年7月至2018年6月对应湖泊的日冰覆盖率信息。每一列的属性分别为:日期、湖水覆盖率、湖水冰覆盖率、云覆盖率、湖水覆盖率和经过云处理后的湖面冰覆盖率。通常以0.1、0.9的冰覆盖面积比作为判别湖泊冰物候的依据。数据集包含的excel文件可以进一步获取四个湖冰物候参数:开始冻结(FUS),完全冻结(FUE),开始融化(BUS),完全融化(BUE),和92个湖泊,可获取两个参数,FUS和BUE。
邱玉宝
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物丰度数据产品通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱。应用线性混合模型LMM(Linear Mixture Model)计算得到。
徐希燕
北极地区因其独特的自然条件和地理位置,在全球变化中扮演着非常重要的角色。而极地海冰作为影响气候变化的重要影响因子,是全球气候变化的灵敏器。中国在北极建设的考察站之一——黄河站,其重点支持围绕全球变化及其区域相应、极区空间环境与空间气候、极地环境中的生命特征与过程三大科学领域,为中国深入开展北极科学考察活动提供了重要平台。因此,构建了近年来北极海冰关键区域数据验证产品数据集,实现对北极海冰关键区域的监测情况。
陈甫, 邱玉宝
微波散射计冰盖冻融数据覆盖时间更新到2015年到2019年,空间分辨率为4.45km.时间分辨率为逐日,覆盖范围为南北极冰盖。基于微波辐射计的遥感反演方法考虑积雪特性在时空和空间上的变化,首先提取散射计数据的DVPR时间序列数据,有效利用散射计数据的高时间分辨率,同时利用通道差去除地形带来的影响;随后利用广义高斯模型对每一个采样点时间序列的方差值进行拟,以此来区分出干湿雪点,即确定融化范围,这种广义高斯模型相比于传统的双高斯模型需要的输入参数少,得到的阈值也具有唯一性;最后利用移动窗分割算法来精确找到湿雪点的融化开始时间、 结束时间以及持续时间, 可以有效地去除融化或非融化时期的温度突变所带来的影响。长时间序列星载微波散射计数据来自QSCAT和ASCAT两个传感器。通过实测站点的验证表明南极冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波散射计的南极冻融数据每个文件由810*680的栅格组成,格陵兰冰盖冻融数据每个文件由810*680的栅格组成(0值:非融化区域,1值:融化区域)。
梁雷
青藏高原珠峰站和纳木错站点气溶胶光学厚度数据是基于中科院青藏高原所大气辐射观在珠峰站和纳木错站点的观测数据产品而形成,数据覆盖时间从2017年到2019年,时间分辨率为逐小时,覆盖站点为珠峰站和纳木错站点,经纬度坐标为(珠峰站:28.365N, 86.948E,纳木错站:30.7725N,90.9626E)。观测数据来源为MFRSR仪器观测的辐射数据反演获得,所包含特征变量为气溶胶光学厚度,观测反演误差范围约为15%。数据格式为txt格式。
丛志远
太阳总辐射及吸收和散射性物质衰减的总辐射为采用国际上通用的太阳辐射表(LI200SZ,LI-COR, Inc., USA)测量获得。本测量测量数据为总太阳辐射,包括直射和漫反射的太阳辐射,波长范围400-1100nm。测量结果单位为W/m2,在自然采光下典型误差为± 3%(入射角60°以内)。北极Sodankylä 站的数据来源于与站点合作和网站下载等。北极Sodankylä 站数据覆盖时间更新到2018年。
白建辉
青藏高原湖泊众多,该地区湖泊冰期物候和持续时间对区域和全球气候变化非常敏感,因此被用作气候变化研究的关键指标,特别是地球三极环境变化对比研究。但由于其自然环境恶劣,人口稀少,缺乏对湖泊冰物候的常规现场测量。利用中分辨率成像光谱仪(MODIS)归一化差雪指数(NDSI)数据,以500米的分辨率对湖泊冰进行了监测,填补了观测空白。利用传统的雪图算法对晴天条件下的湖泊日冰量和覆盖范围进行检测,利用湖泊表面条件的时空连续性,通过一系列步骤对云层覆盖条件下的湖泊日冰量和覆盖范围进行重新确定。通过时间序列分析308个大于3km2的湖泊确定为湖冰范围和覆盖的有效记录,形成每日湖冰范围和覆盖数据集,包括216个湖泊。
邱玉宝
微波辐射计冰盖冻融数据集覆盖时间更新到2016到2019年,空间分辨率为25 km;基于微波辐射计的遥感反演方法采用改进的基于小波冰盖冻融探测算法,算法考虑冰盖冻融亮温特性在时间上的变化,首先利用小波变换对格陵兰所有冰盖区域的长时间亮度温度数据进行小波多尺度分解,在不同尺度下对边缘信息进行分析。再次,采用方差分析的方法将冰盖融化和重新冻结过程产生的边缘信息从噪声中分离出来。基于已提取的冰盖长时间亮度温度变化边缘信息,利用广义高斯模型来确定干雪和湿雪分类的最优边缘阈值, 从而探测出格陵兰冰盖发生融化的区域。最后,基于空间自动纠错的原理,运用空间邻域纠错算子对由噪音引起的错误结果进行探测,并进行人工纠错。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在冻融提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明格陵兰冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波辐射计的南极冻融数据每个文件由316*332的栅格组成,格陵兰冰盖冻融数据每个文件由304*448的栅格组成(0值:非融化区域,1值:融化区域)。
梁雷
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物丰度数据产品通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱。应用线性混合模型LMM(Linear Mixture Model)计算得到。菲尔德斯半岛特色植被覆盖度根据其与丰度的相关线性关系获得。
徐希燕
基于sentinel-1超分宽幅SAR数据,利用提出的U-net冰裂隙探测方法,形成了南北极冰盖冰裂隙高程数据。首先对sentinel-1超分宽幅SAR数据预处理,主要包括辐射定标、冰盖范围确定和斑点噪声去除。其中,为抑制SAR数据的斑点噪声,同时为了保证冰裂隙特征,我们采用了去除乘性噪声的PPB方法。该方法既能有效去除斑点,还能保留冰裂隙的特征。其次,我们利用提出的基于U-net的冰裂隙探测算法进行冰裂隙提取。为了获取正确冰裂隙SAR数据样本,我们通过比对冰裂隙高分辨率光学数据来对SAR样板进行选取,从而形成冰裂隙SAR数据样本。基于冰裂隙区域和非冰裂隙区域SAR数据样本,我们利用U-net方法对冰裂隙进行提取。最后,我们对探测出的冰裂隙数据进行地理编码形成南北极冰盖冰裂隙产品。
梁雷
北极阿拉斯加站点气溶胶光学厚度数据是基于美国能源部大气辐射观测计划在北极阿拉斯加站点的观测数据产品而形成,数据覆盖时间更新从2016年到2019年,时间分辨率为逐小时,覆盖站点为北极阿拉斯加站点,经纬度坐标为(71°19′22.8″N, 156°36′32.4″ W)。观测数据来源为MFRSR仪器观测的辐射数据反演获得,所包含特征变量为气溶胶光学厚度,观测反演误差范围约为15%。数据格式为nc格式。
赵传峰
河冰是冰冻圈的主要组成部分,极区河流封冻对北极航运和运输业有重大影响。随着中俄“冰上丝绸之路”的建设,监测额尔齐斯河流域河冰的变化可为河流通航提供理论基础。北极地区水文站的稀疏分布限制了河冰的研究,其中水文站有限的可用数据表明了河冰破裂具有提前的趋势,但驱动这种趋势的特定气候机制十分复杂。因此,具有高时间分辨率的光学数据(如MODIS产品)适用于监测河流冰物候和绘制河流冰盖范围,有助于了解河冰破裂过程。本研究基于MODIS及被动微波数据,实现一种利用不同遥感数据,以对额尔齐斯河流域河冰进行监测的方法,以期分析河流开始封河时间、结束开河时间、开河速率、封河速率和冰冻期持续时间等河冰物候参数。同时亦有助于理解河冰破裂过程对北极气候变暖的响应。
梁雯珊, 邱玉宝
1)数据内容:重建的1289-1993年北极巴伦支海-喀拉海秋季海冰范围时间序列; 2)数据来源及加工方法:冰芯、树轮代用资料;多种统计方法建模; 3)数据质量描述:年分辨率,可信度高; 4)数据应用成果及前景:历史时期北极海冰变化特征及对气候变化的响应和影响。巴伦支海-喀拉海地区是中国冬春季极端冷空气南下的关键海区,但观测资料的缺乏限制对其规律和变化机制的认识,重建长时间尺度北极海冰的变化特征对研究全球背景下北极海冰变化和对中国历史气候的影响有重要意义。
效存德
目前,基于提出的利用变化检测和决策树算法的SAR冰盖冻融探测算法,利用sentinel-1 EW SAR数据对南北极冰盖月平均冻融进行了探测。同时利用已经开发的基于大数据平台的冻融产品生产模块,国际上首次生产了南极冰盖和格陵兰冰盖冻融产品,通过自动气象站温度数据研制,冰盖冻融探测精度达到90%。目前,数据产品获取时间主要为南北极的夏季,其中南极冰盖产品为1、2、3、10、11、12月和格陵兰的产品为5、6、7、8、9、10月。
张露
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物光谱和标注数据为2018年1月7-22日南极半岛周边菲尔德斯半岛和阿德利岛的9个区域37个样点的光谱数据,为南极植物分布和变化研究提供本底信息。
徐希燕
斯瓦尔巴群岛(又译斯瓦尔巴特、斯匹次卑尔根群岛)。位于北极地区的群岛,是挪威最北界国土范围的属地,它坐落在欧洲大陆北方,于挪威大陆与北极点两者之间。植被主要是地衣和苔藓类,仅有的树木是小极地柳和矮桦木。该地区采集的植被光谱数据集主要是基于北极斯瓦尔巴群岛新奥尔松地区283个样点的先锋植物调查,调查时间为2018年7月6-22日,采集地点包括伦敦岛,黄河站区和冰川前,为北极苔原区植物分布和变化研究提供本底信息。
徐希燕
夏季阳光照射下,覆盖在冰面上的积雪融化,在冰面上形成的不同形状大小的冰上水池融池。海冰表面融化造成的融池会降低海冰反照率,因而会对极区能量平衡造成显著影响,增加吸收进而加速海冰融化过程。在影响海冰反照率的因素中,融池是最重要且变化最剧烈的因素之一。随着气候的变化,夏季冰融化速度也越来越快。对地球表层的能量平衡具有重要的影响,冰融速度加快也可能使融池这种重要的自然现象成为北极海冰融化季节最显著的冰表面特征之一。融池的反照率介于海水与海冰之间,研究冰上融池也是研究北极海冰快速变化机理的一个重要组成部分。由于海冰融池和海面具有相似的微波信号特征,且受到风速、海冰融化等因素影响利用微波数据进行融池覆盖度的制图具有明显的不确定性,因此最为可靠的融池覆盖度遥感方法为利用中分辨率光学遥感数据(如MODIS)进行亚像元融池覆盖度的制图。本数据集包含利用MODIS数据进行基于动态端元反射率的亚像元分解反演的北极海冰融池覆盖度和海冰密集度。
熊川, 任艳, 邱玉宝
多年冻土约占青藏高原陆地面积的46%,是冰冻圈重要组成部分。但是,由于多年冻土埋藏较深,其分布难以通过地表观测直接获取,因此,研究多年冻土分布往往依赖于地面观测。该数据集基于多种观测方法,包括:钻孔勘察、坑探、土壤温度和探地雷达,获取青藏高原多年冻土分布点尺度信息,并归档形成首个青藏高原多年冻土存在性数据集(v1.0)。数据集包含626条信息,覆盖不同海拔、坡向和气候状态。同时,根据观测方式和数据质量,对数据的置信度进行了分类,为不同研究目的使用该数据提供了参考。该数据为多年冻土分布提供了本底信息,可用于多年冻土模拟验证和未来气候变暖下多年冻土退化评估。
曹斌, 张廷军, 吴青柏, 盛煜, 赵林, 邹德富
基于2015年夏季Landsat8 OLI遥感影像,提取覆盖“一带一路”范围内的典型样点该影像的光谱特征值。波段包括band (0.45 - 0.51μm)、band (0.53 - 0.59μm)、band (0.64 - 0.67μm)、band (0.85 - 0.88μm)、band (1.57 - 1.65μm)、band (2.11 - 2.29 μm)、band (10.60 - 11.19 μm)和band (11.50 - 12.51 μm)等八个,同时基于“一带一路”区域土地利用数据(V1.0)(2015)提取了每个样地的土地覆被/利用类型(10个)。数据包括excel格式和shp格式,shp数据文件为光谱特征数据集每个样地的空间分布及光谱信息。
许尔琪
基于最新发布的青藏高原多年冻土存在性证据数据集,利用统计模型计算得到了1公里分辨率青藏高原多年冻土概率分布图。该图考虑了气温、积雪和植被这三个多年冻土分布控制性因素,因此能够准确地反应青藏高原冻土的空间异质性。根据1000多个实测资料验证和与已有多年冻土图的对比结果显示,该图的整体分布精度为82.5%,卡帕系数可达到0.62,在多年冻土下界表现出了更好的分类效果。结果显示,青藏高原多年冻土区面积约为1.54 (1.35–1.66) 百万平方公里, 约占陆地面积的 60.7 (54.5– 65.2)% 。多年冻土面积 约为 1.17 (0.95–1.35)百万平方公里,约占46 (37.3–53.0)%。
曹斌
数据来源于联合国粮农组织(FAO)和维也纳国际应用系统研究所(IIASA)所构建的世界土壤数据库(Harmonized World Soil Database version 1.1 )(HWSD). 中国境内数据源为第二次全国土地调查南京土壤所所提供的1:100万土壤数据。 该数据可为建模者提供模型输入参数,农业角度可用来研究生态农业分区,粮食安全和气候变化等。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。 土壤属性表主要字段包括: SU_SYM90(FAO90土壤分类系统中土壤名称); SU_SYM85(FAO85分类); T_TEXTURE(顶层土壤质地); DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_GRAVEL: Real (碎石体积百分比); T_SAND: Real (沙含量); T_SILT: Real (淤泥含量); T_CLAY: Real (粘土含量); T_USDA_TEX: Real (USDA土壤质地分类); T_REF_BULK: Real (土壤容重); T_OC: Real (有机碳含量); T_PH_H2O: Real (酸碱度) T_CEC_CLAY: Real (粘性层土壤的阳离子交换能力); T_CEC_SOIL: Real (土壤的阳离子交换能力) T_BS: Real (基本饱和度); T_TEB: Real (交换性盐基); T_CACO3: Real (碳酸盐或石灰含量) T_CASO4: Real (硫酸盐含量); T_ESP: Real (可交换钠盐); T_ECE: Real (电导率)。 其中以T_开头属性字段表示上层土壤属性(0-30cm),以S_开头属性字段表示下层土壤属性(30-100cm)。 具体属性值代表何意义请参考文件夹下说明文档*.pdf及数据库*.mdb。
Food and Agriculture Organization of the United Nations(FAO), aa
该数据集提供1978年10月24日到2012年12月31日逐日的中国范围的积雪厚度分布数据,其空间分辨率为25km。用于反演该雪深数据集的原始数据来自美国国家雪冰数据中心(NSIDC)处理的SMMR(1978-1987年),SSM/I(1987-2008年)和AMSR-E(2002-2012)逐日被动微波亮温数据。由于三个传感器搭载在不同的平台上,所以得到的数据存在一定的系统不一致性。通过对不同传感器的亮温进行交叉定标提高亮温数据在时间上的一致性。然后利用车涛博士在Chang算法基础上针对中国地区进行修正的算法进行雪深反演。具体反演方法参考“数据说明文档”。 该数据集包含EASE-Grid和经纬度两种投影方式,分别放入两个不同的文件夹中:ease-grid_rar(数据仅到2010年)和lon-lat_rar。两种投影的数据都逐年打包,文件命名方式为:传感器名称简写+年份,如ease-grid_rar目录下的SR1985表示用SMMR亮温数据反演的1985年的雪深;SI1990表示用SSM/I亮温数据反演的1990年的雪深;AE2005表示用AMSR-E亮温数据反演的2005年的雪深,这些数据的投影方式都是EASE-Grid。lon-lat_rar目录下,上面的数据集名称解释相同,只是其投影方式为经纬度投影。详细数据说明请参考数据文档。
车涛, 李新, 戴礼云
全球台风路径数据集包含了2018年29个发生在西北太平洋的台风路径点的数据,包含时间、经纬度、中心气压、风速风力、未来移向、未来移速、风力等级等指标;数据来源于中央气象台台风网(http://typhoon.nmc.cn/web.html),使用python抓取了网页发布的台风路径数据,并将抓取的excel数据表整理导成shapefile形式,按照台风风力等级划分标准赋予每一个路径点风力等级; 可以应用于基于台风路径点的移动情况、风速风力等的特征、影响分析。
陈怡婷, 杨华, 武建军, 周红敏
数据内容:本数据集包含3种分辨率(0.25度、0.75度和2度)青藏高原多年平均月温度递减率(单位:℃/m)网格数据 数据来源及加工方法:基于高程标准差和相关性阈值动态检测不同分辨率网格内MODIS地温-海拔样本的有效性来获得局部可靠的温度递减率 数据质量描述:基于青藏高原113个站点的1980-2014年间日平均气温观测,对ERA-Interim气温数据应用0.75度气温递减率产品进行日平均气温的空间降尺度,使其验证误差(均方根误差)由~4℃降低到~2℃。 数据应用成果及前景:该数据集可应用于多种再分析资料的气温降尺度。
张凡, 张宏波
结合Landsat影像(4215景)、地形图,利用半自动水体提取及人工目视检查编辑,完成了过去60多年来(1960s, 1970s, 1990, 1995, 2000, 2005, 2010, 2015, 2020)详细的中国湖泊(大于1平方公里)数量与面积变化研究。从1960s到2020年,中国湖泊总数量(≥ 1 km^2)从2127个增加到2621个,面积从68537 km^2扩张到82302 km^2 。
张国庆
本数据集是建立在青藏高原基础上的高原土壤水分和土壤温度观测数据,用于量化粗分辨率卫星和土壤水分和土壤温度模型产物的不确定性。青藏高原土壤温湿度观测数据(Tibet-Obs)由四个区域尺度的原位参考网络组成,包括寒冷半干旱气候的那曲网络,寒冷潮湿气候的玛曲网络和寒冷干旱的阿里网络,以及帕里网络。这些网络提供了对青藏高原不同气候和地表水文气象条件的代表性覆盖。 - 时间分辨率:逐时 - 空间分辨率:点测量 - 测量精度:土壤水分,0.00001;土壤温度,0.1℃;数据集尺寸:标称深度为5,10,20,40和80厘米的土壤水分和温度统计值 - 单位:土壤水分,cm ^ 3 cm ^ -3; 土壤温度, ℃
Bob Su, 阳坤
该数据集包含了2018年长江源区人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年8月黄河源区(扎陵湖北面)人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年可可西里人工采集的土地覆盖地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含2014年07月23日至2014年08月18日在黑河下游混合林站和超级站观测的热像仪组分温度数据。观测地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。在混合林站和超级站分别使用Testo890-2(热红外图像:640 × 480,可见光2048 × 1536)和Testo875-2i(热红外图像:160 × 120,可见光640 × 480)热像仪,以通量塔为中心,在10m高度处,拍摄塔周围的地表亮温和可见光图像。在混合林站的观测方向为东北、东、东南、西南和西北,在超级站的观测方向为东北、东南、西南和西北。观测时间范围主要为晴空日期的10:00至16:00;各次的观测时间为整点和MODIS、Landsat 8过境时;8月4日的拍摄为配合航空飞行,观测间隔约为10min。
李明松, 马晋
本数据集为基于蒸散发互补方法建立的中国地表蒸散发产品(v1.5),输入数据包括CMFD向下短波辐射、向下长波辐射、气温、气压,以及GLASS地表发射率和反照率、ERA5-land地表温度和空气湿度、NCEP散射辐射率等。本数据集时间跨度为1982年-2017年,空间范围为中国陆地区域。本数据集可为研究长时间尺度水循环和气候变化提供基础。 陆地实际蒸散发 (Ea),单位: mm month-1。 时间分辨率为逐月; 空间分辨率为0.1°; 数据类型:NetCDF; 本数据仅为陆地实际蒸散发,不含水面。
马宁, Jozsef Szilagyi, 张寅生, 刘文彬
该数据集包含2014年07月22日至2016年07月19日在黑河下游混合林站和超级站观测的组分温度数据。测量地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。所使用的红外辐射计型号为SI-111,数采为CR800。混合林站使用两支传感器分别观测光照胡杨(南侧)和阴影胡杨(北侧)的组分温度。两支传感器架设高约5m,距目标约1m,水平观测。超级站使用两支传感器分别观测裸土和柽柳的组分温度。观测裸土的传感器架设高度约2m,观测天顶角约45°;观测柽柳的传感器架设高度约1m,距被测目标约0.5m,水平观测。
周纪, 李明松, 马晋
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件