当前浏览: 冻土


印度河水资源时空分布数据集(1998-2017)

本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。

2022-10-23

北极多年冻土变化生态调节价值数据集(1982–2015)

1982-2015年北极多年冻土变化生态调节价值数据集,时间分辨率为1982、2015两期以及两期变化率,覆盖范围为整个环北极苔原区,空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态学方法结合,量化了北极多年冻土对生态系统的调节服务价值,单价参考了剔除降水和雪水当量后的活动层厚度与NDVI变化相关性(0.35)及其草地生态系统服务价值(苔原生态系统服务单价以1/3草地生态系统服务价值为标准)。

2022-10-20

青藏高原五道梁地区多年冻土活动层厚度数据产品(2017-2020)

基于SBAS-InSAR技术获取的地表季节性形变以及基于变分模态分解校正后的ERA5-Land时空多层土壤湿度数据反演青藏高原五道梁多年冻土区域的活动层厚度,数据时间范围为2017-2020年,空间分辨率为1km。该数据产品可用于研究青藏高原多年冻土区域活动层厚度变化以及分析其与气候变化以及水循环、能量循环的相互作用关系,对于了解多年冻土退化状况、高原环境演化以及冻土退化对生态和气候的影响具有重要意义。

2022-10-19

青藏工程走廊活动层厚度分布预测图(2015-2065)

青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。活动层厚度不仅是研究多年冻土区地面热状态的重要指标,而且是冻土工程建设中需考虑的关键因子。GIPL1.0的核心是Kudryavtesv方法,该模型考虑了雪盖、植被和不同土层的热物理性质,但尹国安等发现相比Kudryavtesv方法,引入TTOP模型后精度更高,因此结合冻结/融化指数对模型做了改进,通过实地监测数据验证发现:活动层厚度模拟误差小于50cm。因此利用改进后的GIPL1.0 模型模拟了青藏工程走廊的活动层厚度,并预测了SSP2-4.5气候变化情景下未来活动层的厚度。

2022-09-05

青藏工程走廊地温情景预测分布图(2015-2065)

青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。冻土温度不仅是研究多年冻土区地面热状态的重要指标,而且是冻土工程建设中需考虑的关键因子。GIPL1.0的核心是Kudryavtesv方法,该模型考虑了雪盖、植被和不同土层的热物理性质,但尹国安等发现相比Kudryavtesv方法,引入TTOP模型后精度更高,因此结合冻结/融化指数对模型做了改进,通过实地监测数据验证发现:冻土温度模拟误差小于1℃。因此利用改进后的GIPL1.0 模型模拟了青藏工程走廊的多年冻土温度,并预测了SSP2-4.5气候变化情景下未来多年冻土温度。

2022-08-27

青藏工程走廊地表信息(2014-2020)

该数据集是通过中国高分辨率对地观测中心获取了青藏工程走廊地区的高分1号卫星遥感影像资料,经过多光谱与全色波段的融合处理,得到了空间分辨率2 m的影像数据,在获取地面植被信息过程中,采用面向对象的计算机自动解译与人工目视解译相结合的分类技术,面向对象分类技术是集合邻近像元为对象来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。在实际操作中,借助 eCognition 软件对影像进行自动提取,主要过程为影像分割、信息提取和精度评价。经过与实地定点调查验证,整体提取精度大于90%。

2022-08-27

泛北极工程活动范围灾害易发性分布(2015-2020)

根据泛北极潜在热融灾害(主要为热融滑坡)诱发因素,包括:气温(冻融环境)、降雨、积雪、土壤类型、地形地貌及地下含冰量等,基于地球大数据资源库提供的基础数据,采用机器学习方法(逻辑回归、随机森林、人工神经网络、支持向量机等),以目前已有解译北半球热融滑坡为训练样本,最终获得了泛北极的热融灾害易发性(发生概率)区划图。根据驱动因素敏感性发现气候因素(气温与降雨)对热融灾害的发生于分布贡献度最大,坡度因素贡献度次之,含冰量与辐射也具有较高的贡献。

2022-07-31

泛北极工程活动范围冻土分布(2000-2015)

对于泛北极或北半球,通常使用冻融指数来预测多年冻土分布,活动层厚度及气候变化信息等。因此,结合加拿大气象中心提供的分辨率为25km月平均雪深数据,该数据基于CRUNCEP冻融指数利用雪深修正后的冻结数模型预测了泛北极多年冻土分布范围。考虑到雪深数据始于1998年而冻融指数止于2015年。所以模拟了2000-2015年的冻土分布状况。尽管国际雪冰数据中心(NSIDC)提供的泛北极多年冻土图也可以反映多年冻土的分布范围,但不能反映气候变暖背景下2000年之后的多年冻土分布状况。通过模拟得到的2000 – 2015年泛北极多年冻土面积为19.96×106 km2。和已有国际雪冰数据中心提供的多年冻土分布图不一致的地方主要位于岛状多年冻土区。

2022-07-31

黄河源区若尔盖湿地观测点气象观测数据(2017-2019)

若尔盖湿地观测点始海拔 3435 米,位于四川省若尔盖县花湖湿地(102°49′09″E, 33°55′09″N),下垫面为典型的高寒泥炭沼泽湿地,植被、水体和泥炭层发育良好。本数据集为2017-2019年若尔盖湿地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射。

2022-07-18

北极地区植被与冻融变化关系分布图(1982-2015)

北极多年冻土区作为全球碳库的重要组成部分,是全球气候变化最敏感的区域之一。北极地区变暖的速度是全球平均速度的两倍,引发北极多年冻土的快速变化。1982-2015北半球不同类型多年冻土区NDVI变化数据集,时间分辨率为每5年一期,覆盖范围为整个环北极国家,空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态学方法结合,量化了北半球多年冻土对生态系统的调节服务功能,其所有数据进行了质量控制。

2022-07-04