当前浏览: 地表水


青藏高原湖泊测深数据(2000,2018)

数据由三个字段组成:经度、纬度和湖泊深度。利用声呐设备在湖泊上走航测量得到的水深数据,GPS同步测量得到的经度和纬度。利用湖水盐度和温度数据校正声呐测得的深度数据,并剔除数据异常点。利用水深数据可以插值形成湖泊水下地形图。利用水下地形图可以计算湖泊的储水量,评估青藏高原湖泊总水量。利用水下地形图结合遥感数据还可以研究青藏高原湖泊水量变化特征及其影响因素,是亚洲水塔水量变化研究的重要组成部分。

2021-05-25

中亚阿姆河流域卡菲尼干水文站水文资料(2020)

本数据为阿姆河上游支流卡菲尼干河水文站水文资料。该站为中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题水能与生态研究所、塔吉克斯坦水文气象局合作建设。该数据可以用于中亚山区水资源评估等科学研究和水利工程等服务。资料时段:2019年11月3日至2020年12月3日。资料要素:逐小时流速(m/s)、逐小时水位(m)和逐小时降雨量(m)。站点位置:37°36′01″N,68°08′01″E,420m 一、300W-QX河流流速、水位观测仪 (一)流速参数: 1供电电压 12(9~27)V(DC) 2工作电流 120(110~135)mA 3工作温度(-40 ~85) °C 4测量范围 (0.15 ~20)m/s 5测量精度 ±0.02m/s 6分辨率   1mm 7探测距离 0.1~50 m 8安装高度0.15~ 25 m 9采样频率   20sps (二)水位参数: 1测量范围 0.5~20 m 2测量精度 ±3 mm 3分辨率   1 mm 4重复性   ±1mm 二、SL3-1翻斗式雨量传感器 1承水口径 ф200mm 2测量降水强度 4mm/min以内 3测量最小分度 0.1mm降水量 4最大允许误差 ±4%mm 三、流速、观测仪数据获取的频率:传感器每隔5S测量一次流速和水位数据 四、小时平均流速计算:小时平均流速和水位数据由一小时内所有每隔5S测量的流速和水位数据取平均计算得出 五、水位数据中大量出现的0值的说明:水位数据中0值是供电不足引起传感器断电重启,初次启动第一条数据是0,导致小时平均值出现0。经2020年7月26日供电改造后,数据恢复了正常,2020年9月底又开始出现供电不足,经2020年12月25日二次供电改造,数据恢复正常 六、水位监测情况进行说明(如7358行,2020/11/3 16:00,最高水位6.7m,最低水位为0m,如何解释?另,最高水位的最大值是6.7m,数据中多次出现这个最高水位的值,似乎显示了6.7m是监测数据的极限值,实际情况是否如此? ):6.7m是设置的初始传感器距离河床底部高度,出现6.7m是传感器刚启动时候的异常数据,是设备供电不足导致断电重启引起传感器重启,初次启动出现这种异常值,经2020年12月25日供电改造后,数据恢复了正常

2021-01-26

青藏高原内陆流域年际湖泊面积数据产品(1986-2019)(V1.0)

该数据提供了青藏高原内陆流域582个面积大于1平方公里的湖泊从1986-2019的年湖泊面积。 首先根据JRC和SRTM DEM数据,识别研究区内582个大于1 km2的湖泊。利用Landsat5/7/8所有覆盖湖泊的遥感影像合成每年的Landsat影像,根据NDWI指数和Ostu算法动态分割每个湖泊,并据此计算每个湖泊1986-2019年湖泊面积大小。 本研究基于Landsat卫星遥感影像,利用Google Earth Engine 处理了所有Landsat影像,建立了至今为止最全的青藏高原地区大于1平方公里的年湖泊面积数据集;开发了一套湖泊面积自动提取算法,实现单个湖泊多年面积的批量计算;该数据对分析青藏高原地区湖泊面积动态、水量平衡,及研究青藏高原湖气候变化有重要意义。

2020-08-06

青藏高原、西伯利亚、阿拉斯加河湖区30m分辨率湖冰类型数据集(2015-2019)

湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要指标。但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行监测,可填补观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集。数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。

2020-07-30

中国高寒地区地表过程与环境观测网络水文数据集(2019)

在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。 2019年中国高寒地区地表过程与环境观测网络水文数据集,主要收集:藏东南站、珠峰站、玉龙雪山站、纳木错站、阿里站、天山站等六个站 点实测水文(径流、水位、水温等)数据。 藏东南站:流量数据,包含2019年4次利用M9测流数,有平均流速、流量和最大水深等数据;相对水位数据采用hobo压力式水位仪测量,包含2019年全年日均相对水位和水温数据。 纳木错站:流量数据,包括2019年4次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据,水位数据采用hobo压力式水位仪测量,包含2019年原始1小时的水压、水温和电量,通过水压可以计算相对水位; 珠峰站:绒布河流量,包括2019年6-9月13次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据; 阿里站:流量数据:包括2019年利用河锚M9不定期测量的22次数据,相对水位数据采用hobo压力式水位仪测量,包含2019年全年每小时水位和水温数据; 天山站:水位数据:包括3个点2019年的日平均水位 玉龙雪山站: 包括木家桥2019年1-10月流量数据

2020-07-18

祁连山综合观测网 : 青海湖流域地表过程综合观测网 (青海湖湖面气象要素梯度观测系统-2018)

该数据集包含了2018年1月1日至2018年10月12日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726'' E,北纬 36° 35' 27.337'' N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖表辐射温度(IRT_1)(单位:摄氏度)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.1.1-10.12由于由于采集器的问题,除四分量外的气象数据均无记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。

2019-06-20

青藏高原逐时10 km分辨率近地表大气驱动和地表状态数据集(2000-2010)

采用WRF模式制备的青藏高原近地表大气驱动和地表状态数据集,时间范围:2000-2010,空间范围:25-40 ºN,75-105 ºE,时间分辨率:逐时,空间分辨率:10 km,格点数为150*300。 总计有33个变量,其中包含的近地表大气变量11个: 地面上2m高度的温度、 地面上2m高度的比湿、地面气压、地面上10m风场的纬向分量、地面上10m风场的经向分量、固体降水比例、累积的积云对流降水、累积的格点降水、地表处的向下短波辐射通量、地表处的向下长波辐射通量、累计的潜在蒸发。 包含的地表状态变量有19个:各层土壤温度、各层土壤湿度、 各层土壤液态水含量、雪相态改变的热通量、土壤底部温度、地表径流、地下径流、植被比例、地面热通量、雪水当量、实际雪厚、雪密度、冠层中的水、地表温度、反照率、背景反照率、更低边界处的土壤温度、地表面处向上的热量通量(感热通量)、地表面处向上的水量通量(感热通量)。 其他变量3个:经度、纬度和行星边界层高度。

2019-01-25

黑河生态水文遥感试验:水文气象观测网数据集(4号点-乌靖桥径流观测数据-2015)

该数据集包含了2015年5月20日至2016年3月11日的黑河中游径流加密观测中4号点的河流水位观测数据。仪器维修重新与2015年5月20日安装调试完毕。观测点位于甘肃省张掖市靖安乡上堡村黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39.065°,E100.433056°,海拔1431米,河道宽度58米。2012年水位观测采用HOBO压力式水位计,采集频率30分钟;2013年起采用采用SR50超声测距仪,采集频率30分钟。2014年6月25日仪器损毁,重新购置。2015年5月20日重新开始记录。数据包括以下部分: 水位观测,观测频率30分钟,单位(cm); 水文气象网或站点信息请参考Li et al. (2013), 观测数据处理请参考He et al.(2016)。

2017-12-25

黑河生态水文遥感试验:水文气象观测网数据集(7号点-平川桥径流观测数据-2015)

该数据集包含了2015年1月1日至2016年3月11日的黑河中游径流加密观测中7号点的河流水位和流速观测数据。2014年底传感器出现异常,维修后3月25日调试正常。观测点位于甘肃省张掖市临泽县平川乡黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39.331667°,E 100.099722°,海拔1375米,河道宽度130米。2015年水位观测采用SR50超声波测距仪,采集频率30分钟。数据说明包括: 水位观测,观测频率30分钟,单位(cm);缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。

2017-12-24

黑河中下游生态水文模型模拟结果V1.0 (2001-2012)

本项目利用分布式生态水文模型HEIFLOW(Hydrological-Ecological Integrated watershed-scale FLOW model)对黑河中下游开展了生态水文过程模拟。模型使用了动态土地利用功能,采用了由胡晓利等提供的2000、2007、2011三期土地利用数据。 模拟的时空范围及精度如下: 模拟期:2000-2012年,其中2000年为模型预热期 模拟步长:逐日 模拟的空间范围:黑河中下游,模型面积90589平方公里 模拟的空间精度:地表和地下均采用1km×1km网格,地表共90589个水文响应单元;地下分5层,每层90589个活动网格 HEIFLOW模型模拟结果数据集包含以下变量: (1)降水量(单位:毫米/月) (2)黑河上游主要出山径流量观测值(单位:立方米/秒) (3)蒸散发量(单位:毫米/月) (4)土壤入渗量(单位:毫米/月) (5)地表产流量(单位:毫米/月) (6)浅层地下水水头(单位:米) (7)地下水潜水蒸发量(单位:立方米/月) (8)浅层地下水面上补给量(单位:立方米/月) (9)地下水出露量(单位:立方米/月) (10)河流-地下水交换量(单位:立方米/月) (11)黑河干流四个水文站(高崖、正义峡、哨马营、狼心山)河道流量模拟值(单位:立方米/秒) 上述前两个变量为模型驱动数据,其余均为模型模拟量。所有变量时间范围为2001-2012,时间尺度为月。空间分布式数据精度为1km×1km,数据格式为tif。 上述变量中,如遇负值,表示地下水排泄量(如地下水潜水蒸发量、地下水出露量、地下水补给河道量等)。如需地下水埋深,使用模型地面高程数据减去地下水水头数据即可,部分区域地下水水头可能高于地表,表明该处存在地下水出露。 此外,数据集还提供: 中下游模型建模范围(格式为.shp) 中下游模型地表高程(格式为.tif) 上述数据全部使用WGS_1984_UTM_Zone_47N坐标系。 以HEIFLOW_V1_ ET_2001M01.tif为例,说明数据文件命名规则: HEIFLOW: 模型名称 V1: 数据集版本号1.0 ET: 变量名 2001M01:2000年1月,其中M表示月份

2017-02-02