该数据集包含了2012年6月1日至9月20日的通量观测矩阵中两台宇宙射线仪器(crs_a和crs_b)的观测数据。站点位于甘肃省张掖市盈科灌区农田内,下垫面是玉米地。crs_a观测点的经纬度是100.36975E, 38.85385N,海拔1557.16m,crs_b观测点的经纬度是100.37225E, 38.85557N,海拔1557.16m,仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。此外缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor,具体见数据引用文献. 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再反求得到N0。具体见数据引用文献. 在此,根据两台仪器源区内的Soilnet土壤水分数据对仪器进行率定,并根据实际情况之间建立土壤体积含水量θv和快中子之间的关系,即将公式(2)中的θm换作θv处理。分别选取干湿状况差异比较明显的6月26日-27日和7月16日-17日四天的数据,其中6月26日-27日率定数据显示土壤水分较小,因此选取4厘米、10厘米和20厘米的三个值平均值作为率定数据,其变化范围为22%-30%,而7月16日-17日率定数据显示土壤水分较大,因此选取4厘米、10厘米的两个值平均值作为率定数据,其变化范围为28%-39%,最后平均得到crs_a和crs_b的值N0分别为3252、3597。 4) 土壤水分计算 计算得到每小时的土壤含水量数据。具体计算公式见数据引用文献. 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考Zhu et al.(2015)。
2016-07-08
1.数据集为黑河流域上游土壤含水量数据集,数据为2013-2014年定位点实测数据。 2.入渗数据是用ECH2O进行测量。包括5层的土壤含水量、土壤温度 3.部分仪器因为电池续航不足、道路被冲断以及仪器被偷等原因缺失数据
2016-04-23
数据集为2013-2014年黑河流域上游野外土壤测量分析数据,包括:土壤颗粒分析、水分特征曲线、饱和导水率、土壤孔隙度、入渗分析、土壤容重 一、土壤颗粒分析 1.土壤粒度数据是在兰州大学西部教育部重点实验室粒度实验室进行测量。测量仪器为马尔文激光粒度仪MS2000。 2.粒度数据用激光粒度仪进行测量。导致颗粒较大的样点无法测量,比如D23,D25无法测量而没有数据。加上部分样品缺失。 二、土壤水分特征曲线 1.采用离心机法测量:将野外采集的环刀原状土放入离心机,分别用转速0,310,980,1700,2190,2770,3100,5370,6930,8200,11600测量每次的转子重量得到。 2.环刀是按照数字从1开始一直往后编号,由于分3组同时在不同地方取样,因此为了避免重复编号,1组从1号开始编号,2组从500号开始往后编号,3组从1000号开始往后编号。和采样点的编号是一致的。在两个Excel中能找到对应编号。 3.土壤容重数据在2013年因为是补充2012年取样,因此并不是每个点位都有数据。同时部分样点土层未达到70 cm厚,因此无法取5层数据,同时由于运输及记录问题导致有很大部分数据存在缺失。同时随机点只选取了一层数据。 4.烘干后重量:部分样品由于实验过程中烘箱出问题,导致未测量烘干重。 三、土壤饱和导水率 1.测量方法说明:此方法是依据依艳丽(2009)的定水头发自制仪器进行测量。使用马利奥特瓶在实验过程中始终保持定水头;同时最后将当时测量的Ks转化为10℃时的Ks值进行分析计算。详细测量记录表格参见饱和导水率测量说明。K10℃是转化为10℃后的饱和导水率数据。单位:cm/min. 2.数据缺失说明:饱和导水率数据部分由于土样缺失以及土层深度不够无法取第4或5层数据导致数据缺失 3.取样时间:2014年7月 四、土壤孔隙度 1.采用容重法推求:根据土壤容重与土壤孔隙度的关系得到。 2.数据在2014年因为是补充2012年取样,因此并不是每个点位都有数据。同时部分样点土层未达到70 cm厚,因此无法取5层数据,同时由于运输及记录问题导致有很大部分数据存在缺失。同时随机点只选取了一层数据。 五、土壤入渗分析 1.入渗数据是用“MINI DISK PORTABLE TENSION INFILTROMETER”进行测量。得到一定负压下的近似饱和导水率。仪器情况详细情况见网站:http://www.decagon.com/products/hydrology/hydraulic-conductivity/mini-disk-portable-tension-infiltrometer/ 2.D7当时因为下雨而未测量入渗实验。 六、土壤容重 1.2014年土壤容重为在2012年基础上进行补样用环刀取原状土。 2.该土壤容重为土壤干容重,采用烘干法测量。将野外采集的原状环刀土样在烘箱中以105℃恒温24小时,土壤干重除以土壤体积(100立方厘米)。 3.单位:g/cm3
2016-04-19
该数据为黑河计划项目“黑河上游土壤水文异质性观测试验及其对山区水文过程的影响”(91125010)的土壤水分采样点经纬度信息,主要用于表达本项目中土壤水分采样点的空间分布情况。
2016-04-19
该数据集包含了2012年7月至2013年8月的黑河流域典型土壤样点饱和导水率数据。黑河流域典型土壤样点采集方式为代表性采样,指能够采集到景观区域内的典型土壤类型,尽可能采集代表性较高的样点,重复三次测每类土壤的饱和导水率,取平均值。
2016-04-18
本数据集包括黑河中游盈科/大满灌区5.5km×5.5km观测矩阵内75个BNUNET节点的2012年5-9月连续观测数据集。75个节点配置均相同,包含4cm、10cm和20cm深度的3层土壤温度探头和4cm深度的1层土壤水分探头,观测频率为10分钟。本数据集可为异质性地表关键水热变量的遥感估算及其遥感真实性检验,生态水文研究,灌溉优化管理等研究提供时空连续的观测数据集。时间是UTC+8。 详细信息请参见“BNUNET数据文档.docx”
2016-04-01
本数据集包括黑河中游张掖市周边扁都口地区0.5°×0.5°观测矩阵内26个BNUNET节点的2013年9月至2014年3月连续观测数据集。26个节点配置均相同,包含1cm、5cm和10cm深度的3层土壤温度探头和5cm深度的1层土壤水分探头,观测频率为2小时。本数据集可为地表异质性的遥感真实性检验、生态水文等研究提供时空连续的观测数据集。时间为UTC+8。 详细信息请参见“BNUNET数据文档.docx”
2016-03-24
数据集包含黑河流域典型样点土壤观测数据:PH值、土壤质地 1、土壤PH值:典型土壤样点经纬度及PH值。 2、土壤质地:包含2012年7月至2013年8月的黑河流域典型土壤样点的土壤质地数据。黑河流域典型土壤样点采集方式为代表性采样,指能够采集到景观区域内的典型土壤类型,尽可能采集代表性较高的样点。按照中国土壤系统分类,以诊断层和诊断特性为基础,采取每个剖面的土壤样本。
2016-03-12
该数据集包含了2012年7月至2014年8月的黑河流域典型土壤样点的位置信息与土壤系统分类类型数据。黑河流域典型土壤样点采集方式为代表性采样,指能够采集到景观区域内的典型土壤类型,尽可能采集代表性较高的样点。按照中国土壤系统分类,以诊断层和诊断特性为基础,划分每个剖面的土壤类型。样点总共划分为8个土纲:有机土、人为土、干旱土、盐成土、潜育土、均腐土、雏形土、新成土,39个亚类。
2016-03-12
利用红外气体分析仪测量水汽通量的方法,观测了灌木黑果枸杞和小灌木红砂在荒漠典型天气下的植物蒸散量和土壤蒸发量,比较不同生活型荒漠植物耗水量的日变化规律。 该测定系统由LI-8100闭路式土壤碳通量自动测定仪(LI-COR,美国)和北京力高泰科技有限公司设计制作的同化箱组成,LI-8100是美国LI-COR公司生产的用于土壤碳通量测量的仪器,采用红外气体分析仪测量CO2和H2O的浓度。同化箱的长宽高均为50cm。同化箱由LI-8100控制,设置好测量参数后,仪器可以自动运行。
2016-01-18
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件