当前浏览: 地上生物量


中国北方温性草地地上生物量数据集(1993-2019)

本数据集以大量的地面实测草地地上生物量数据为基础,以1980s中国植被类型图划分出温性草地类型,借助Google Earth Engine平台上的Landsat遥感数据,在不同草地类型分别构建了草地地上实测生物量-遥感数据的随机森林模型,在验证可靠的基础上,对1993~2019年间逐年的草地地上生物量进行了估算,从而形成了1993~2019年中国北方温性草地地上生物量的逐年空间数据集。地上生物量定义为单位面积内地面以上实存生活的植被有机物质总量。已对原有栅格值乘以系数100,单位:0.01克/平方米(g/m²)。本数据集可为中国北方温性草地资源、生态环境的动态监测和评价提供科学基础。

2021-01-22

祁连山综合观测网:黑河流域地表过程综合观测网(大满超级站物候相机观测数据集-2018)

该数据集包含2018年6月5日至12月15日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)、物候期及覆盖度(FC)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。

2019-06-17

黑河天涝池流域森林生物量1m分辨率空间分布数据(1961-2010)

样地调查数据为,于2013年8月份,在天涝池流域设置森林样地30块,样地规格为10 m×20 m,样地长边与山坡走向平行,其中青海云杉林26块,祁连圆柏林2块,云杉圆柏混交林2块,在样地内,采用围尺测量每株树木的胸径(树干1.3 m高度处的直径),采用手持超声波测高器测量每株树木的树高、枝下高(树冠下端第一活枝的高度),采用皮尺测量南北方向和东西方向冠幅,利用差分GPS对样地进行定位.以样地碳储量数据为优化控制条件,以Kriging插值得到的生物量空间分布图驱动场,采用HASM算法模拟天涝池森林生物量空间分布图,模拟结果符合研究区的植被分布规律,获得较好的效果。分辨率1m

2018-01-01

黑河天涝池流域森林生物量空间分布数据(2013年8月)

样地调查数据为,于2013年8月份,在天涝池流域设置森林样地30块,样地规格为10 m×20 m,样地长边与山坡走向平行,其中青海云杉林26块,祁连圆柏林2块,云杉圆柏混交林2块,在样地内,采用围尺测量每株树木的胸径(树干1.3 m高度处的直径),采用手持超声波测高器测量每株树木的树高、枝下高(树冠下端第一活枝的高度),采用皮尺测量南北方向和东西方向冠幅,利用差分GPS对样地进行定位.以样地碳储量数据为优化控制条件,以Kriging插值得到的生物量空间分布图驱动场,采用HASM算法模拟天涝池森林生物量空间分布图,模拟结果符合研究区的植被分布规律,获得较好的效果。

2017-12-07