引用方式:
Wang, J., Hadjikakou, M., Bryan, B. Mapping Built-Up Land with High Accuracy Using Fourier Transformation and Temporal Correction. Preprints 2020, 2020120105 (doi: 10.20944/preprints202012.0105.v1).
文献信息 | |
标题 |
Mapping Built-Up Land with High Accuracy Using Fourier Transformation and Temporal Correction |
年份 | 2020 |
出版社 |
Preprint |
链接 | https://www.preprints.org/manuscript/202012.0105/v1 |
摘要 |
Long-term, high-accuracy mapping of built-up land dynamics is essential for understanding urbanization and its consequences for the environment. Despite advances in remote sensing and classification algorithms, built-up land mapping using early satellite imagery (e.g., from the 2000s and earlier) remains prone to uncertainty. We mapped the extent of built-up land in the North China Plain, one of China’s most important agricultural regions, from 1990 to 2019 at three-year intervals. Using dense time-stack Landsat data, we applied discrete Fourier transformation to create temporal predictors and reduce mapping uncertainties for early years. We improved overall accuracy by 8% compared to using spectral and indices predictors alone. We implemented a temporal correction algorithm to remove inconsistent pixel classifications, further improving accuracy to a consistently high level (>94%) across years. A cross-product comparison showed that our study achieved the highest levels of accuracy across years. Total built-up land in the North China Plain increased from 37,941 km2 in 1990–1992 to 131,578 km2 in 2017–2019. Consistent, high-accuracy built-up land mapping provides a reliable basis for policy planning in one of the most rapidly urbanizing regions of the planet. |
此文献未收录 PDF(如何提交?) |
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件