引用方式:
Yao, Y., S. Liang, J. Cheng, S. Liu, J. B. Fisher, X. Zhang, K. Jia, X. Zhao, Q. Qin, B. Zhao, S. J. Han, G. S. Zhou, G. Y. Zhou, Y. L. Li, and S. H. Zhao. 2013. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agricultural and Forest Meteorology 171-172:187-202.
文献信息 | |
标题 |
MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm |
年份 | 2013 |
出版社 |
Agricultural and Forest Meteorology |
摘要 |
Because of China's large size, satellite observations are necessary for estimation of the land surface latent heat flux (LE). We describe here a satellite-driven Priestley–Taylor (PT)-based algorithm constrained by the Normalized Difference Vegetation Index (NDVI) and Apparent Thermal Inertia (ATI) derived from temperature change over time. We compare to the satellite-driven PT-based approach, PT-JPL, and validate both models using data collected from 16 eddy covariance flux towers in China. Like PT-JPL, our proposed algorithm avoids the computational complexities of aerodynamic resistance parameters. We run the algorithms with monthly Moderate Resolution Imaging Spectroradiometer (MODIS) products (0.05° resolution), including albedo, Land Surface Temperature (LST), surface emissivity, and NDVI; and, Insolation from the Japan Aerospace Exploration Agency (JAXA). We find good agreement between our estimates of monthly LE and field-measured LE, with respective Root Mean Square Error (RMSE) and bias differences of 12.5 W m−2 and −6.4 W m−2. As compared with PT-JPL, our proposed algorithm has higher correlations with ground-measurements. Between 2001 and 2010, LE shows generally negative trends in most regions of China, though positive LE trends occur over 39% of the region, primarily in Northeast, North and South China. Our results indicate that the variations of terrestrial LE are responding to large-scale droughts and afforestation caused by human activity with direct links to terrestrial energy exchange, both spatially and temporally. |
此文献未收录 PDF(如何提交?) |
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件