青藏高原是世界上最大的高、低纬度多年冻土带,近几十年来,其多年冻土带迅速退化,其最显著的特征之一就是热融湖塘的形成。这样的湖泊由于能够调节碳循环、水和能量通量而引起了极大的关注。然而,这一地区的热融湖塘的分布在很大程度上仍不为人所知,这阻碍了我们对多年冻土的响应及其碳反馈对气候变化的理解。本数据集基于200余景Sentinel-2A影像,结合ArcGIS、NDWI和Google Earth Engine平台,通过GEE自动提取和人工目视解译的方法提提取青藏高原多年冻土区内热融湖塘边界。在2018年热融湖塘数据集中,青藏高原多年冻土区共有121,758个热融湖塘,面积为0.00035-0.5 km²,总面积为1730 km² 。本次热融湖塘编目数据集为青藏高原水资源评价、多年冻土退化评价、热喀斯特研究提供了基础数据。
陈旭, 牟翠翠, 贾麟, 李志龙, 范成彦, 母梅, 彭小清, 吴晓东
全面了解青藏高原多年冻土发生的变化,包括年平均地温(MAGT)和活动层厚度(ALT)的变化,对气候变化引起的多年冻土变化工程的实施具有重要意义。 青藏高原多年冻土活动层厚度和范围模拟数据集,参考2000-2015年CMFD再分析数据及中国气象局气象观测资料、1公里数字高程模型、地理空间环境预测因子、结合冰川和冰湖、钻孔数据等,利用统计和机器学习(ML)方法模拟了青藏高原多年冻土层磁通量和磁通量的当前和未来变化,得到RCP2.6、RCP4.5和RCP8.5三种不同浓度情景下2000-2015、2061-2080年平均地温(MAGT)和活动层厚度(ALT)范围数据,分辨率为0.1*0.1度。 模拟结果表明,利用统计和ML相结合的方法模拟冻土热状态所需的参数和输入变量较少,可以有效地了解青藏高原冻土对气候变化的响应。
倪杰, 吴通华
本数据集来源于论文:Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., & Zhao, L. (2019). The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10(1), 4195. doi:10.1038/s41467-019-12214-5. 数据中包含新评估的青藏高原3m深度土壤有机碳库格点数据及相应的R代码,格点数据空间分辨率为0.1°。 以往对青藏高原土壤碳库的评估多以现代气候、植被等特性为根据,未考虑古气候条件、土层厚度等因素的影响。本研究中,研究人员综合考虑了古气候和现代气候条件、土层厚度和土壤理化属性、植被和地形等因素,通过机器学习算法重新评估了青藏高原3m深度土壤碳库。新评估得到的青藏高原土壤碳储量为36.6 Pg C (38.9-34.2 Pg C),约为陆地生态系统模型模拟均值的3倍(11.5±4.2 Pg C)。同时,研究指出,模型中缺乏对古气候影响的考虑是导致模拟偏差的重要原因。 数据中包含以下字段: Longitude (°E) Latitude (°N) SOCD (0-30cm) (kg C m-2) SOCD (0-300cm) (kg C m-2) GridArea (k㎡) 3mCstcok (10^6 kg C)
丁金枝, 汪涛
本数据集采用SMMR(1979-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)逐日亮温数据,由双指标(TB_37v,SG)冻融判别算法生成,分类结果包含冻结地表、融化地表、沙漠及水体四种类型。数据覆盖范围为三江源区域,空间分辨率为25.067525 km,EASE Grid投影方式,以Geotif格式存储。像元数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表水体。因为该数据集中所有tif文件描述的是三江源国家公园范围,所以这些文件的行列号信息是不变的,摘录如下(其中cellsize单位为m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0
晋锐
青藏高原地温分布图是基于程国栋(1984)提出的多年冻土稳定型划分指标(表1),利用统计模拟的年变化深度地温数据划分的。利用地理加权回归方法,融合2010年左右233个钻孔年变化深度处的年平均地温数据和遥感积雪日数、GLASS叶面积指数、SoilGrids250m的土壤沙粒含量、土壤粘粒含量、土壤粉粒含量、土壤有机质和土壤体密度数据产品、中国气象局陆面数据同化系统(CLDAS)输出的二版土壤湿度产品和融合了近4万区域自动气象站和FY2/EMSIP降水产品的融合产品。估计得到了代表2010年代的青藏高原1km分辨率年冻土稳定性分布图。数据格式为Arcgis Raster。
冉有华
基于最新发布的青藏高原多年冻土存在性证据数据集,利用统计模型计算得到了1公里分辨率青藏高原多年冻土概率分布图。该图考虑了气温、积雪和植被这三个多年冻土分布控制性因素,因此能够准确地反应青藏高原冻土的空间异质性。根据1000多个实测资料验证和与已有多年冻土图的对比结果显示,该图的整体分布精度为82.5%,卡帕系数可达到0.62,在多年冻土下界表现出了更好的分类效果。结果显示,青藏高原多年冻土区面积约为1.54 (1.35–1.66) 百万平方公里, 约占陆地面积的 60.7 (54.5– 65.2)% 。多年冻土面积 约为 1.17 (0.95–1.35)百万平方公里,约占46 (37.3–53.0)%。
曹斌
青藏高原被称为“世界第三极”和“亚洲水塔”,一个较为准确的青藏高原冻土图对当地寒区工程和环境建设有着重要意义。因此,为了满足工程和环境需求,通过多源遥感数据(高程、MODIS地表温度、植被指数和土壤水分)建立决策树对青藏高原多年冻土和季节冻土进行了划分。数据为栅格格式,DN=1为多年冻土;DN=2为季节冻土。 其中高程数据来自于1kmx1km的中国DEM(Digital Elevation Model)数据集(http://westdc.westgis.ac.cn);地表温度是欧阳斌等通过 Sin-Linear 法拟合后的日平均地表温度年均值。文中在MODIS 地表度产品用Sin-Linear 法拟合估算出日平均地表温度基础上,为了缩小与已有冻土图前后时间差异,以研究区2003年地表温度做为冻土分类的信息源;植被信息采用Aqua 和Terra 星的2003 年 16 天合成产品数据(MYD13A1 和 MOD13A1)提取植被指数值;土壤水分值根据 2003 年 AMSR-E观测质量较好的5月份升轨数据得到。因此,基于以上数据信息,以1:300万青藏高原冻土图和1:400万<<中国冰川冻土沙漠图>>为先验信息得到决策树的分类阈值,从而对青藏高原的冻土类型进行分类。 最后,对于分类结果利用西昆仑山、改则和温泉的调查冻土图以及其它已有的青藏高原冻土图进行了验证和对比,统计结果显示基于多源遥感信息的青藏高原冻土图多年冻土面积占青藏高原总面积的42.5%(111.3 × 104 km²),季节冻土面积占青藏高原总面积的53.8% (140.9 × 104 km²),这个结果与先验图(1:300万青藏高原冻土图)具有较好的一致性。此外,文中基于不同冻土图之间的总体精度和Kappa系数表明:不同方法编制或模拟的青藏高原冻土图在空间分布格局上基本保持一致,而分类不一致的地方大部分在多年冻土与季节冻土的分界边缘地带。
牛富俊, 尹国安
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件