青藏高原是世界上最大的高、低纬度多年冻土带,近几十年来,其多年冻土带迅速退化,其最显著的特征之一就是热融湖塘的形成。这样的湖泊由于能够调节碳循环、水和能量通量而引起了极大的关注。然而,这一地区的热融湖塘的分布在很大程度上仍不为人所知,这阻碍了我们对多年冻土的响应及其碳反馈对气候变化的理解。本数据集基于200余景Sentinel-2A影像,结合ArcGIS、NDWI和Google Earth Engine平台,通过GEE自动提取和人工目视解译的方法提提取青藏高原多年冻土区内热融湖塘边界。在2018年热融湖塘数据集中,青藏高原多年冻土区共有121,758个热融湖塘,面积为0.00035-0.5 km²,总面积为1730 km² 。本次热融湖塘编目数据集为青藏高原水资源评价、多年冻土退化评价、热喀斯特研究提供了基础数据。
陈旭, 牟翠翠, 贾麟, 李志龙, 范成彦, 母梅, 彭小清, 吴晓东
本数据集为青藏高原地区2005、2010、2015、2017、2018年逐日0.01°×0.01°地表土壤水分产品。采用多元统计回归模型,通过对“青藏高原地区SMAP时间扩展0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.01°×0.01°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集为基于SMAP时间扩展方法生产的青藏高原地区0.25°×0.25°地表土壤水分产品。即采用随机森林方法,利用被动微波亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。其中,1980、1985、1990、1995和2000年为逐月产品,使用SMMR,SSM/I和SSMIS 19 GHz V/H及37 GHz V三个通道的亮温数据。2002年6月20日至2018年12月30日为逐日产品,使用AMSR-E和AMSR2 6.925 GHz V/H,10.65 GHz V/H及36.5 GHz V五个通道的亮温数据。 参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
基于2015年欧空局ESA GlobCover全球陆地覆盖数据,结合中科院地理资源所土地利用数据NLCD-China、清华大学全球土地覆被FROM-GLC数据、美国NASA的MODIS全球土地覆被MCD12Q1数据、马里兰大学全球土地覆被UMD、美国USGS土地覆被数据IGBP DISCover,构建了青藏高原LUC分类系统以及其余数据分类系统的转换规则,构建土地覆被分类置信度函数和地类融合规则,进行土地覆被产品融合与修正,完成了青藏高原土地利用数据V1.0(1992,2005,2015,,300m×300m栅格,一级分类)
许尔琪
高分二号(GF-2)卫星是我国自主研制的首颗空间分辨率优于1米的民用光学遥感卫星,搭载有两台高分辨率1米全色、4米多光谱相机,星下点空间分辨率可达0.8米。 该数据集为2017年的6景高分二号卫星遥感影像数据。文件夹列表为: GF2_PMS1_E100.5_N37.2_20171013_L1A0002678101 GF2_PMS1_E100.5_N37.4_20171013_L1A0002678097 GF2_PMS1_E100.6_N37.6_20171013_L1A0002678096 GF2_PMS2_E100.3_N37.4_20170810_L1A0002534662 GF2_PMS2_E100.5_N36.7_20170805_L1A0002526723 GF2_PMS2_E100.7_N37.2_20171013_L1A0002672923 GF2_PMS2_E100.7_N37.4_20171013_L1A0002672921 文件命名规则:卫星名称_传感器名称_中心经度_中心纬度_成像时间_L****
中国资源卫星应用中心
该数据集为收集到的资源三号02星的遥感影像。资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。将进一步加强国产卫星影像在国土测绘、资源调查与监测、防灾减灾、农林水利、生态环境、城市规划与建设、交通等领域的服务保障能力。文件列表: ZY302_PMS_E98.8_N37.4_20170707_L1A0000156704 ZY302_PMS_E100.4_N37.0_20171127_L1A0000217243 ZY302_TMS_E99.5_N37.0_20170717_L1A0000160059 ZY302_TMS_E100.3_N36.6_20171127_L1A0000217279 ZY302_TMS_E100.4_N37.0_20170529_L1A0000139947 文件夹命名规则:卫星名称_传感器名称_中心经度_中心纬度_获取时间_L1****
中国资源卫星应用中心
该数据集为高分一号卫星遥感数据,包括2017-8-13、2017-10-5 两景PMS1相机的数据,2017-5-27日一景PMS2相机的数据,2018-9-23日WFV2和WFV3相机影像各一景。文件列表: GF1_PMS1_E99.1_N37.2_20170813_L1A0002539236 GF1_PMS1_E101.2_N36.4_20171005_L1A0002653985 GF1_PMS2_E100.3_N37.7_20170527_L1A0002384098 GF1_WFV2_E98.4_N37.6_20180927_L1A0003481737 GF1_WFV3_E100.4_N37.3_20180927_L1A0003481706
周圣明
该数据集为收集到的资源三号卫星的遥感影像。资源三号卫星(ZY-3)于2012年1月9日成功发射。该卫星的主要任务是长期、连续、稳定、快速地获取覆盖全国的高分辨率立体影像和多光谱影像,为国土资源调查与监测、防灾减灾、农林水利、生态环境、城市规划与建设、交通、国家重大工程等领域的应用提供服务。文件列表: ZY3_MUX_E99.8_N36.6_20171011_L1A0003817398 ZY3_MUX_E99.9_N37.0_20171011_L1A0003817397 ZY3_MUX_E100.0_N37.4_20171011_L1A0003817396 ZY3_MUX_E100.1_N36.6_20170625_L1A0003738882 ZY3_MUX_E100.8_N36.6_20170710_L1A0003748776 ZY3_MUX_E100.9_N37.0_20170710_L1A0003748775 ZY3_NAD_E99.8_N36.6_20171011_L1A0003817439 ZY3_NAD_E99.9_N37.0_20171011_L1A0003817438 ZY3_NAD_E100.0_N37.4_20171011_L1A0003817437 ZY3_NAD_E100.1_N36.6_20170625_L1A0003746917 ZY3_NAD_E100.8_N36.6_20170710_L1A0003748580 ZY3_NAD_E100.9_N37.0_20170710_L1A0003748579
中国资源卫星应用中心
本数据集为青藏高原黄河源区2015年逐像素年内最大植被覆盖度空间分布图,该区域的面积约为4.4万平方公里。此数据是基于2015年MODIS(空间分辨率250米) 和Landsat-8 OLI(空间分辨率30米)植被生长季(5月初-9月末)的时间序列影像,并利用最大值合成方法、像元二分模型和时间插值等方式获得。植被覆盖度空间分布图的空间分辨率为30米,采用WGS 1984 UTM 投影,数据格式为grid格式。
王广军
青藏高原生态资产评估遥感反演基础数据集包括了青藏高原自2000年起年度的植被覆盖度(FVC),净初级生产力(NPP)和叶面积指数(LAI)等基于遥感反演的生态参数,以供区域尺度生态资产评估研究使用。其中净初级生产力数据基于CASA模型的NPP估算方法完成。在某些极端或环境因子迅速变化的情况下,如果完全适应不可能,或者植物还来不及适应新的环境,NPP则受到最紧缺资源的限制,它们可以通过一个转换因子连接起来,这一转换因子可以是一个复杂的模型,也可以是一个简单的比率常数。
刘文俊
青藏高原生态资产评估遥感反演基础数据集包括了青藏高原自2000年起年度的植被覆盖度(FVC),净初级生产力(NPP)和叶面积指数(LAI)等基于遥感反演的生态参数,以供区域尺度生态资产评估研究使用。其中植被覆盖度数据以MODIS NDVI数据为主体,基于像元二分模型,利用多尺度遥感影像,结合植被群落类型、分布特征等高精度遥感参数,发展植被覆盖度模型,用混合像元分解法构建。精度验证估测值与实测值的RMSE为0.21,在样本值0-0.5之间均存在一定的高估情况。
刘文俊
本数据包含两个数据文件,GLOBELAND30 TILES(原始数据)和TIBET_ GLOBELAND30_MOSAIC(镶嵌数据)。 原始数据下载自全球地表覆盖数据网站(GlobalLand3)(http://www.globallandcover.com),范围涵盖青藏高原及周边地区。原始数据分幅存储,为了便于用户使用数据,在分幅数据的基础上,我们使用Erdas软件对原始数据进行了拼接镶嵌。 全球地表覆盖数据(GlobalLand30)是国家863计划重点项目“全球地表覆盖遥感制图与关键技术研究”的科研成果,该数据利用美国陆地卫星影像(TM5、ETM+)和中国环境减灾卫星(HJ-1)影像数据,采用基于像素分类-对象提取-知识检核的综合方法提取而成。数据包括耕地、森林、草地、灌木、湿地、水体、苔原、人造覆盖、裸地、冰川和永久积雪10个一级地表覆盖类型,没有进行二级类型提取。在准确度评估方面,评估九种类型和超过150,000个测试样品。GlobeLand30-2010的整体精度达到80.33%。Kappa指标为0.75。 GlobeLand30数据采用WGS84坐标系,UTM投影,6度分带,参考椭球为WGS 84椭球。根据不同的纬度情况,采用2种分幅方式进行数据组织。在南北纬60°区域内,按照5°(纬度)×6°(经度)大小进行分幅;在南北纬60°至80°区域内,按照5°(纬度)×12°(经度)大小进行分幅,按照奇数6°带的中央经线进行投影。 GLOBELAND30 TILES:原始数据保留数据原貌,未进行处理。 TIBET_ GLOBELAND30_MOSAIC:使用erdas软件对原始数据进行镶嵌,参数设置使用默认值原始数据保留数据原貌,精度同下载网站。
陈军
该数据集是玛多地区2016年7月、8月、9月的植被指数(NDVI),基于高分一号的多光谱数据计算得到,空间分辨率为16m。对高分一号数据进行镶嵌、转投影、裁切等处理,然后在7月、8月、9月中每个月进行最大化合成。
李飞, 张志军
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件