植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
项目基于Landsat_TM30m遥感数据通过人工解译和机器学习算法完成了1990-2015年祁连山地区森林、农田、草地、湿地、聚落城市、荒漠六大类生态系统的空间格局分布信息提取,该套数据可以服务于研究区域生态系统宏观格局演变规律,生态系统服务功能评估,重大生态修复工程规划与效果评估。生态系统宏观格局演变是气候-社会经济耦合驱动的自然过程演变的宏观反应,也是土地利用与土地覆被变化的直接反映,更是区域可持续发展成效评估的重要数据基础。研究可为祁连山地区绿色发展指数评估提供数据基础。
吴锋
植被的净初级生产力(Net Primary Productivity,NPP)指绿色植物在单位时间、单位面积上由光合作用产生的有机物质总量(即总初级生产力,Gross Primary Productivity,GPP)中扣除自养呼吸后的剩余部分,NPP作为陆地生态系统的水循环、养分循环和生物多样性变化的基础,是估算地球支持能力和评价陆地生态系统可持续发展的重要生态指标。本数据集包括祁连山区域2021年月度合成30m NPP产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。
吴俊君, 李艺, 仲波
叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。本数据集包括祁连山区域2021年月度合成30m LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。
吴俊君, 李艺, 仲波
归一化植被指数(Normalized Difference Vegetation Index,NDVI)是近红外波段的反射率值与红光波段的反射率值之差比上近红外波段的反射率值与红光波段的反射率值之和。植被指数合成是指在适当合成周期内选出植被指数最佳代表,合成一幅空间分辨率、大气状况、云状况、观测几何、几何精度等影响最小化的植被指数栅格图像。本数据集包括祁连山区域2021年月度合成30m植被指数产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。
吴俊君, 李艺, 仲波
该数据集产品包含1990-2020年每5年1期的青藏高原地上生物量和植被覆盖度数据产品,即1990年、1995年、2000年、2005年、2010年、2015年和2020年共7期。青藏高原地上生物量是根据不同的土地覆被类型,分别建立草地、森林等的地上生物量反演模型形成的地上生物量遥感反演产品;青藏高原植被覆盖度是采用像元二分法模型形成的植被覆盖度遥感反演产品。其中2000-2020年5期青藏高原地上生物量和植被覆盖度是基于MODIS卫星遥感数据进行遥感反演,空间分辨率为250米;1990和1995年2期青藏高原地上生物量和植被覆盖度是基于NOAA AVHRR卫星遥感数据进行遥感反演,经重采样后空间分辨率为250米。该数据集可为揭示青藏高原土地覆被量与质的时空格局,支持生态系统、生态资产与生态安全评估提供基础数据。
吴炳方
归一化植被指数(Normalized Difference Vegetation Index, NDVI)数据集源数据来自MODIS产品,经过数据格式转换、投影、重采样等预处理流程。现有格式为TIFF格式,投影为Krasovsky_1940_Albers投影。数据空间分辨率为1000米,时间上,从2001-2020年,每年提供一幅图像。NDVI产品有红光和近红外两个波段反射率计算得到,能够用于检测植被生长状态、植被覆盖度等。-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大。
朱军涛
植被覆盖度(Fractional Vegetation Coverage,FVC)定义为植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例,是衡量地表植被状况的一个重要指标。本数据集植被覆盖度作为反应植被覆盖状况的评价指标,0%表示地表像元内没有植被即裸地,值越高表明区域内植被覆盖越大。本数据集包括祁连山区域2021年月度合成30m地表植被覆盖度产品。采用最大值合成(Max value composition, MVC)方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。
吴俊君, 李艺, 仲波
本数据集提供了基于遥感估算凋萎系数优化后的全球土壤质地数据,空间分辨率为0.25度。数据集采用了SCE-UA的优化方法,以基于SMAP遥感土壤水分估算的凋萎系数为优化目标,对两套常用的土壤质地数据集GSDE(Shangguan et al. 2014)和HWSD(Fischer et al., 2008)进行了优化。与站点观测的结果表明(北美地区44个站点),在陆面模式中使用优化后土壤质地数据集的土壤水分和蒸散比模拟准确度有较为明显的提升。
何晴, 卢麾, 周建宏, 阳坤, 施建成
该数据为雅鲁藏布江年楚河沿程DEM和正射影像数据,采用DJI无人机搭载的照相机,按照设定的飞行路线对年楚河采样河段进行拍摄照片。相邻照片重叠度不低于70%,将拍摄的照片利用Agisoft Metashape软件生成正射影像和DEM,正射影像包含红绿蓝三个波段。年楚河沿程共包含年楚河流域4个干流和2个支流采样河段。数字高程模型分辨率为<1.0m,坐标系为WGC1984坐标系。该数据集可以为年楚河流域洪水灾害的精确模拟提供数据支撑,进一步服务于洪水灾害的防治与风险评价,具有重要科学与社会价值。
马旭东, 黄尔, 闫旭峰, 罗铭, 王路
本数据集包括祁连山地区重点区域2021年5月至2021年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为8m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 王宏伟, 周圣明, 曹永攀
本数据集包括黑河流域2021年5月至2021年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为8m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 王宏伟, 周圣明, 曹永攀
雅鲁藏布江流域内巨量固体碎屑物质是记录青藏高原隆升剥蚀历史的重要组成部分之一,不同类型松散沉积物是固体碎屑物质差异输运的直接反映,揭示其空间分布规律及沉积总量,对于深入理解青藏高原的隆升与剥露过程具有重要参考价值。该数据集共包括雅鲁藏布江流域松散沉积物类型及其空间分布图集、厚度空间分布图集和沉积总量估算表等三类图表数据集,以遥感解译与地质填图为主要技术方法,全面厘清了雅鲁藏布江全流域范围内(16个复合子流域)松散沉积物的类型及其空间展布特征,并依据全流域松散沉积物厚度实测数据初步估算了沉积总量。巨量松散沉积物也是流域内滑坡、泥石流、洪沙灾害的重要物质来源,查明其空间展布规模与总量不仅对揭示沉积物源汇过程中记录的地表环境变化、区域构造运动、气候变化、生物地球化学循环等关键信息具有理论意义,同时对高原生态环境监测与保护、洪沙灾害预警与防治、重大基础工程建设和水土保持等具有重要应用价值。
林志鹏, 王成善, 韩中鹏, 白雅俪格, 王新航, 张建, 马星铎, 胡太宇, 张晨敬
本数据使用了大量的MODIS遥感影像,基于Google Earth Engine平台对青藏高原2000年至2018年地表植被覆盖情况进分析计算。植被指数(NDVI)是监测地面植被情况的重要指标。Terra中分辨率成像光谱仪(MODIS)植被指数3级产品(MOD13Q1)第6版数据每16天以250米的空间分辨率生成。基于GEE平台计算的年均NDVI指数可以反映出2000-2018年的植被盖度长时间变化趋势。同时,2000-2018多年平均NDVI指数反映了青藏高原地区的空间分布情况。植被指数(NDVI)的时空变化监测对于环境变化研究、可持续发展规划等是不可或缺的重要基础信息和关键参量,有助于理解气候变化背景下一些生态因子(气温、降水)等变化及其产生的影响。
邱海军
本数据集包括祁连山地区2021年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),MERRA-2气象再分析数据等。
姚云军, 刘绍民, 尚珂
该数据为喜马拉雅山区流域所在喜马拉雅山区1:25万地形数据,由STRM90m高程数据实体在ARCGIS软件中按喜马拉雅山区边界掩膜提取得到,为90M栅格分辨率。由于DEM描述的是地面高程信息,它在测绘、水文、气象、地貌、地质、土壤、工程建设、 通讯、军事等国民经济和国防建设以及人文和自然科学领域有着广泛的应用。在防洪减灾方面,DEM是进行水文分析如汇水区分析、水系网络分析、降雨分析、蓄洪计算、淹没分析等的基础。
王中根
植被净初级生产力(Net Primary Productivity, NPP)作为生态系统物质及能量循环的基础,能够反映区域和全球尺度植被的固碳能力,是评价陆地生态系统质量的重要指标。针对植被净初级生产力产品生产,基于光能利用率模型的原理耦合遥感、气象、植被及土壤类型数据进行了国家屏障区生态系统生产力建模研究。在参数的选择上,由SPOT/VEG ETATION NDVI卫星遥感数据、中国植被图、太阳总辐射值及温度等数据计算出光合有效辐射(APAR);根据区域蒸散模型模拟水分胁迫因子,与土壤水分子模型相比,它可以简化参数,增强模型的可操作性。将光合有效辐射和实际光能利用率作为CASA(Carnegie-Ames-Stanford Approach)模型的输入变量,基于参数化模型实现对青藏高原2000-2018年1km分辨率的陆地植被净初级生产力估算。
王晓峰
中国2000-2020年逐日积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为1天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。为了评估ChinaSA的反演质量,利用地面台站的观测数据提出了样方观测验证方法,验证了积雪反照率产品的精度,并与常用的四种反照率产品(GLASS、GlobAlbedo、MCD43A3和SAD)进行了精度对比。验证结果表明,ChinaSA在所有验证中精度都优于其他产品,均方根误差小于0.12,在森林区域的均方根误差能达到0.021。
肖鹏峰, 胡瑞, 张正, 秦棽
“一带一路”沿线国家植被覆盖状况恢复力反映了沿线国家植被覆盖状况恢复力水平,数据值越高,表明沿线国家植被覆盖状况恢复力越强。植被覆盖状况恢复力数据产品制备参考了2000-2020年MODIS MOD13A3数据集,数据集空间分辨率为1 KM,时间分辨率为1年,利用2000-2020年“一带一路”沿线国家NDVI的逐年数据,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了植被覆盖状况恢复力产品。“一带一路”沿线国家植被覆盖状况恢复力数据集对分析和对比当前各国植被覆盖状况恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家生态系统生产力恢复力反映了沿线国家生态系统生产力恢复力水平,数据值越高,表明沿线国家生态系统生产力恢复力越强。生态系统生产力恢复力数据产品制备参考了2000—2015年全球中等分辨率植被总初级生产力数据集,数据集空间分辨率为0.05°,时间分辨率为1年,利用2000-2015年“一带一路”沿线国家植被总初级生产力的逐年数据,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了生态系统生产力恢复力产品。“一带一路”沿线国家生态系统生产力恢复力数据集对分析和对比当前各国生态系统生产力恢复力状况具有重要参考意义。
徐新良
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件