归一化植被指数(Normalized Difference Vegetation Index , NDVI)广泛应用于植被监测。本数据集利用2000-2020年青藏高原区域所有可用的Landsat 5/7/8数据(影像10万+),通过MODIS-Landsat数据融合算法(gap filling and Savitzky–Golay filtering;GF-SG),重建了青藏高原植被区域2000-2020年高时空分辨率(30米-8天)NDVI时间序列数据集(QTP-NDVI30)(算法细节请参考论文)。 本数据集具有良好的验证精度。定量评价结果显示重建NDVI影像数据的平均绝对误差MAE为0.02,平均相关系数R为0.96,图像结构相似性SSIM为0.94。选取典型区域与PlanetScope 3米空间分辨率影像比较,空间细节信息得到了较好的保持(产品评价细节请参考论文)。 本数据集地理坐标系为GCS_WGS_84, 空间范围覆盖青藏高原植被区域,植被区域定义为7-9月平均NDVI大于0.15。
曹入尹, 徐子超, 陈洋, 沈妙根, 陈晋
植被的净初级生产力(Net Primary Productivity,NPP)指绿色植物在单位时间、单位面积上由光合作用产生的有机物质总量(即总初级生产力,Gross Primary Productivity,GPP)中扣除自养呼吸后的剩余部分,NPP作为陆地生态系统的水循环、养分循环和生物多样性变化的基础,是估算地球支持能力和评价陆地生态系统可持续发展的重要生态指标。本数据集包括祁连山区域2021年月度合成30m NPP产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。
吴俊君, 李艺, 仲波
叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。本数据集包括祁连山区域2021年月度合成30m LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。
吴俊君, 李艺, 仲波
归一化植被指数(Normalized Difference Vegetation Index,NDVI)是近红外波段的反射率值与红光波段的反射率值之差比上近红外波段的反射率值与红光波段的反射率值之和。植被指数合成是指在适当合成周期内选出植被指数最佳代表,合成一幅空间分辨率、大气状况、云状况、观测几何、几何精度等影响最小化的植被指数栅格图像。本数据集包括祁连山区域2021年月度合成30m植被指数产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。
吴俊君, 李艺, 仲波
植被覆盖度(Fractional Vegetation Coverage,FVC)定义为植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例,是衡量地表植被状况的一个重要指标。本数据集植被覆盖度作为反应植被覆盖状况的评价指标,0%表示地表像元内没有植被即裸地,值越高表明区域内植被覆盖越大。本数据集包括祁连山区域2021年月度合成30m地表植被覆盖度产品。采用最大值合成(Max value composition, MVC)方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。
吴俊君, 李艺, 仲波
充分利用多源植被分类/土地覆盖分类产品各自的优势,通过专门设计与青藏高原植被类型相适应的植被分类体系,选用集成分类方法,在数据可靠性的基础上遵循一致性的原则,制作了青藏高原现状植被图,其在现势性、分类体系的针对性和分类精度上均表现更优。从分类结果的现势性来看,青藏高原现状植被图较早期中国植被图能更好地反映青藏高原植被覆盖现状;从分类体系的针对性来看,青藏高原现状植被图采用了针对青藏高原植被专门设计的分类体系,有利于从多源数据产品中充分提取出具备高可靠性和一致性的植被覆盖信息;从分类精度来看,青藏高原现状植被图的总体精度(78.09%,Kappa系数0.75)较已有相关数据产品提高了18.84% ~ 37.17%,特别是对草地、灌丛等植被类型的分类精度有明显提升。
张慧, 赵涔良, 朱文泉
雅鲁藏布江流域内巨量固体碎屑物质是记录青藏高原隆升剥蚀历史的重要组成部分之一,不同类型松散沉积物是固体碎屑物质差异输运的直接反映,揭示其空间分布规律及沉积总量,对于深入理解青藏高原的隆升与剥露过程具有重要参考价值。该数据集共包括雅鲁藏布江流域松散沉积物类型及其空间分布图集、厚度空间分布图集和沉积总量估算表等三类图表数据集,以遥感解译与地质填图为主要技术方法,全面厘清了雅鲁藏布江全流域范围内(16个复合子流域)松散沉积物的类型及其空间展布特征,并依据全流域松散沉积物厚度实测数据初步估算了沉积总量。巨量松散沉积物也是流域内滑坡、泥石流、洪沙灾害的重要物质来源,查明其空间展布规模与总量不仅对揭示沉积物源汇过程中记录的地表环境变化、区域构造运动、气候变化、生物地球化学循环等关键信息具有理论意义,同时对高原生态环境监测与保护、洪沙灾害预警与防治、重大基础工程建设和水土保持等具有重要应用价值。
林志鹏, 王成善, 韩中鹏, 白雅俪格, 王新航, 张建, 马星铎, 胡太宇, 张晨敬
本数据集包括祁连山地区2021年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),MERRA-2气象再分析数据等。
姚云军, 刘绍民, 尚珂
中国2000-2020年逐日积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为1天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。为了评估ChinaSA的反演质量,利用地面台站的观测数据提出了样方观测验证方法,验证了积雪反照率产品的精度,并与常用的四种反照率产品(GLASS、GlobAlbedo、MCD43A3和SAD)进行了精度对比。验证结果表明,ChinaSA在所有验证中精度都优于其他产品,均方根误差小于0.12,在森林区域的均方根误差能达到0.021。
肖鹏峰, 胡瑞, 张正, 秦棽
华北平原(NCP)是中国最重要的农业生产基地之一,其面积约14万平方公里。除了从黄河取地表水进行渠灌,华北平原还开采大量地下水用于灌溉。高时空分辨率且连续完整的逐日蒸散(ET)估算,将极大提高我们对整个NCP农业用水消耗的认识,服务于农业水资源高效利用。基于双源能量平衡模型(TSEB)和数据融合,本研究在华北平原生成1 km空间分辨率和日尺度,且时间跨度为2008年1月至2019年12月的蒸散数据集。该数据集时空连续完整,且具有较高的空间分辨率。相较于其他产品,该数据集具有可靠的精度,甚至好于已发表的结果。此外,该数据集和相关方法对NCP以及其他农作物种植区的多尺度变化和趋势分析具有重要价值。
张才金, 龙笛
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
本数据集是一个包含10年(2010-2019)的全球日尺度地表土壤水分数据集,分辨率为36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3. 数据集采用Yao et al.(2017,2021)发展的土壤水分神经网络反演算法,将SMAP的优势传递到FY-3B/MWRI,利用人工神经网络方法,以SMAP标准土壤水分产品为训练目标,以FY-3B/MWRI的亮温为输入,最终输出长时序土壤水分数据。土壤水分精度和SMAP接近,达到5%左右。( 全球14个密集观测站网的验证精度 )。
姚盼盼, 卢麾, 赵天杰, 武胜利, 施建成
本数据集是一个包含接近35年(1984-2018)的全球高分辨率光合有效辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于生态过程模拟和全球碳循环的理解。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据、MERRA-2气溶胶数据以及MODIS反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来生态过程模拟的研究和全球二氧化碳通量的估算。
唐文君
本数据集是2017年8月-9月于阿里地区采集的典型地物光谱测量数据。高光谱数据使用ASD便携式地物光谱仪FieldSpec 4测量。进行光谱测量时基本为光线稳定的晴天,测量时记录了云量情况。测量前使用白板进行校准;并使用GPS记录经纬度坐标;记录了测量的植被类型;同时测量了周围土壤的光谱数据。地物光谱仪记录的DN值为.asd格式文件,可使用ViewSpecPro软件读取,并利用EXCEL结合白板数据转换为反射率。光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
刘林山, 张炳华
基于环境敏感区指数(ESAI)方法,计算获得2021年阿拉伯半岛栅格荒漠化风险数据。ESAI方法考虑土壤,植被,气候和管理质量,是监测荒漠化风险最广泛的方法之一。根据ESAI指标框架,选择了14个指标计算四个质量领域,每个质量指数均由几个指标参数计算获得。参考前人研究,确定每个参数分类及其阀值。然后,根据每个类别在荒漠化的敏感性中的重要性以及与荒漠化过程的开始或不可逆转的退化关系,把每个类别分配了1(最低敏感度)和2(最高敏感度)之间的敏感性得分。关于如何选取指标以及与荒漠化风险和得分相关性,在Kosmas的研究中提供了更全面的描述。主要指标数据集来源于联合国粮农组织的世界土壤数据,欧空局的土地覆盖数据和AVHRR数据。所有栅格数据集重采样到500m并合成年度值。尽管验证综合评估指数存在困难,但根据ESAI值的时空比较,对荒漠化风险进行了间接验证,包括对ESAI与稀疏植被和草地转变关系的定量分析和分析ESAI与植被净初级生产力之间的关系。验证结果表明阿拉伯半岛的荒漠化风险数据精度可靠。
许文强
该数据集于2021年5月底至6月在青藏高原野外考察期间使用无人机航拍所得,航片数据量为 3.4 GB,共包含330余张无人机航片。拍摄地点主要位于西藏的拉萨、林芝,云南省的大理、怒江,四川甘孜、阿坝、凉山等州市地区的道路沿线、居民点及其周边地区。所拍航片主要反映拍摄时点当地的土地利用/覆被类型、设施农业用地分布、植被覆盖度等信息,航片具有经纬度和海拔等空间位置信息,不仅可以为土地利用分类提供基础验证信息,而且还能通过计算植被覆盖度,为大尺度区域植被覆盖度的遥感影像反演等工作提供参考。
吕昌河, 张泽民
激光雷达、多光谱和热红外数据是水文、生态、环境监测等研究领域的重要观测数据。本数据集为2020年黑河中游天地一体化综合观测试验无人机观测数据。数据集包括2020年8月16日至21日的无人机遥感数据,无人机平台为大疆精灵4-多光谱版。包括大满超级站(8月16日至21日)、花寨子站(8月19日)、湿地站(8月21日)的激光雷达数据,激光扫描系统为Tovos DroneScan,扫描频率30万点/秒,点密度100点/平方米,扫描精度5厘米;大满超级站(8月18日)、花寨子站(8月19日)、湿地站(8月21日)的多光谱数据,数据集包括5个波段影像,分别为蓝(450nm±16nm)、绿(560nm±16nm)、红(650nm±16nm)、红边(730nm±16nm)、近红外(840nm±26nm)波段;以及湿地站和花寨子站对应生成的NDVI和反射率数据产品,以上数据的空间分辨率约为0.2m;此外,还包括花寨子站(8月18日和19日)、湿地站(8月21日)的热红外数据,热红外通道的波长范围:7.5-13.5μm,成像系统灵敏度(NEDT)< 50MK,最高帧率:30HZ,场景范围(高增益):640×512: -25°至135℃,336×256: -25°至100℃,场景范围(低增益):-40°至550℃。
晋锐
本数据集来源于滦河流域土壤水分遥感试验中的多频多角度地基微波辐射计与雷达主被动协同观测试验。试验地点位于内蒙古自治区正蓝旗昕元牧场(115.93°E, 42.04°N),数据获取于2018年夏季。数据集包含四个部分,即:亮温数据、后向散射数据、土壤数据和植被数据。微波亮温数据由RPG-6CH-DP车载微波辐射计观测得到,包含三个微波波段(L, C和X)的水平和垂直极化亮温,观测入射角变化范围为30-65° (2.5°间隔),数据测量时间间隔为0.5小时。主动微波数据由地基雷达(GBSAR)观测得到,包含了L和C波段四种极化(VV, VH, HH, HV)下的后向散射系数,观测入射角变化范围为30-65°(2.5°间隔)。土壤数据包含地表粗糙度和6层土壤水分和土壤温度(1 cm, 3 cm, 5 cm, 10 cm, 20 cm, 50 cm),采样间隔为10分钟;植被数据为草地的植被含水量。 试验观测时间从2018年8月18日持续到9月25日,数据涵盖的草地多频多角度微波亮温、后向散射系数以及土壤和植被等相关配套数据为陆表微波辐射散射建模与验证、主被动微波亮温降尺度、土壤水分反演算法发展和验证提供了重要资料。
赵天杰, 胡路, 耿德源, 施建成
透明度,作为一种最直观地反映水质特性的指标之一,能够综合地反映水体生态系统的营养状态。光学遥感技术为监测大范围湖泊(包括水库)透明度变化提供了可能。中国湖泊(>1公顷)透明度的年均值数据集覆盖时间从1990到2018年,时间分辨率为5年一期,空间分辨率为30米,使用的数据源为GEE平台的Landsat 长时间序列天顶角反射率产品数据。中国的青藏高原、蒙新高原和东北湖区的影像选择时间主要集中在每年5-10月的非冰期。研究团队利用3种实测透明度数据集进行中国湖泊透明度反演模型的构建与验证。第一种数据集是本研究团队在2004-2018年获取的野外实测数据,该数据集的3/4(976)用来建立模型(红/蓝波段比算法),精度为R2=0.79, rRMSE=61.9%;剩余的1/4(325)用来验证模型,精度为R2=0.80, rRMSE = 57.6%。另外两种数据集是用来验证透明度反演模型的时间迁移性,其中一种数据集是2007-2009年期间由中科院南京地理与湖泊研究所进行湖泊调查获取的实测数据(340),精度为R2=0.78,rRMSE = 59.1%;另一种数据集是1980s-1990s期间第一次湖泊调查结果(229),精度为R2=0.81,rRMSE = 50.6%。模型验证结果表明,透明度反演结果在时空上具有较好的精度和稳定性。最后,基于透明度反演模型,在GEE云平台上编写去云算法、水体指数算法等来实现中国湖泊透明度的反演。该数据集信息有助于决策者或者环境管理者更好改善和保护水质,维持区域的可持续发展。
陶慧, 宋开山, 刘阁, 王强, 温志丹
本数据集来源于滦河流域土壤水分遥感试验中的多频多角度地基微波辐射观测试验,试验地点位于内蒙古自治区多伦县 (42.18°N, 116.47°E),数据获取于2017年。数据集共包含三个部分,即亮温数据、土壤数据和植被数据。微波亮温数据由RPG-6CH-DP车载微波辐射计观测得到,涵盖三种农作物 (玉米、莜麦和荞麦),包括三个微波波段 (L, C和X)的水平和垂直极化亮温,观测入射角变化范围为30-65° (2.5°间隔),时间分辨率为0.5小时。土壤数据包含了三种农作物土壤的5层土壤水分和土壤温度 (2.5 cm, 10 cm, 20 cm, 30 cm, 50 cm),采样间隔为10分钟;土壤数据还包括地表粗糙度、降雨量、灌溉标记和土壤质地。植被数据包括叶面积指数、植株高度、植被含水量等。 试验观测时间从2017年7月19日持续到8月30日,其所涵盖的不同农作物的多频多角度微波亮温及土壤和植被等相关配套数据为陆表微波辐射建模与验证、土壤水分反演算法发展和验证提供了重要资料。
赵天杰, 胡路, 李尚楠, 樊东, 王平凯, 耿德源, 施建成
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件