我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
1985年祁连山国家公园土地利用类型的数据集是基于中科院中国土地利用现状遥感监测数据集,经过裁剪、拼接等操作得到的矢量数据集。2000-2020年的3个数据集是基于GlobeLand30全球30米地表覆盖数据,经过掩膜提取等操作得到的30m分辨率的栅格数据集。所有数据集的土地利用类型包括耕地、森林、灌木林、草地、湿地、水体、苔原、人造表面、裸地、冰川和永久积雪这10个一级类型。数据产品可以检测大多数人类活动所引起的地表覆盖变化,在实际应用中具有十分重要的意义,可以用此数据分析祁连山区域历史的土地利用类型,并结合当前的土地利用类型数据,分析祁连山区域土地利用类型的变化。
年雁云
数据集包含了2020年9月,2021年6月,2021年9月测量得到的3幅廓琼岗日冰川高精度表面地形数据及对应的正射影像图。该数据集的生成使用了大疆精灵4 RTK无人机拍摄的影像数据,经倾斜摄影测量技术计算生成了相关产品,数据空间分辨率达到了0.15米。该数据是对目前低分辨率开源地形数据的补充,能够反映2020年-2021年间廓琼岗日冰川的表面形态变化,有助于精确研究气候变化下廓琼岗日冰川的消融过程。
刘金涛
本数据集包括了中蒙俄经济走廊区1982-2015年最大归一化植被指数(NDVI)数据,2000-2020年最大增强型植被指数(EVI)数据,以及2001-2019年土地覆被利用变化数据(LUCC)。其中,NDVI数据提取自GIMMS卫星数据,分辨率为8km;EVI和LUCC数据提取自MODIS卫星数据(MOD13A3和MCD12C1),分辨率分别为1km和5km。数据集过滤了MODIS卫星数据中原本存在的异常值或缺测值,相比源数据质量更高。其中,使用最大值提取法处理NDVI和EVI数据,得到年最大NDVI和EVI,可以更好地反应研究区的植被分布及变化情况。基于卫星遥感数据的植被和土地利用变化,可以为中蒙俄经济走廊生态环境风险防控提供数据支撑。
张雪芹
本数据集包含:(1)基于测高卫星提取的北半球16个大型湖泊水库冰厚数据,时间跨度为1992-2019年,时间分辨率10天,文件名为Altimetric LIT for 16 large lakes.xlsx;(2)基于遥感湖冰模型的北半球1,313个面积50km^2以上湖泊的逐日湖冰厚度和湖泊表面积雪深度数据,时间跨度为2003-2018年,文件格式为nc格式;(3)未来湖冰厚度变化的预测情况,时间跨度2071-2099年,文件为table S1.xlsx;(4)一个用于查找湖泊的对照表,包含湖泊ID,名称,地理坐标和面积等信息。本数据集可以为全球湖冰和湖面积雪研究提供基础信息,便于深入理解在变化环境下湖冰的演变规律及其对湖泊生态环境和区域社会经济的影响。
李兴东, 龙笛, 黄琦, 赵凡玉
华北平原(NCP)是中国最重要的农业生产基地之一,其面积约14万平方公里。除了从黄河取地表水进行渠灌,华北平原还开采大量地下水用于灌溉。高时空分辨率且连续完整的逐日蒸散(ET)估算,将极大提高我们对整个NCP农业用水消耗的认识,服务于农业水资源高效利用。基于双源能量平衡模型(TSEB)和数据融合,本研究在华北平原生成1 km空间分辨率和日尺度,且时间跨度为2008年1月至2019年12月的蒸散数据集。该数据集时空连续完整,且具有较高的空间分辨率。相较于其他产品,该数据集具有可靠的精度,甚至好于已发表的结果。此外,该数据集和相关方法对NCP以及其他农作物种植区的多尺度变化和趋势分析具有重要价值。
张才金, 龙笛
“亚洲水塔”青藏高原(TP)的降水在区域水和能源循环中发挥着关键作用,对下游国家的水资源供应有重要影响。气象站点所获取的降水信息通常被认为是最准确的,但在地形复杂、环境恶劣的青藏高原中,气象站数据却十分有限。卫星和再分析降水产品可以为地面测量提供补充信息,特别是在大面积测量不足的区域。在这里,我们通过使用人工神经网络 (ANN) 和环境变量(包括海拔、地表压力和风速)确定各种数据源的权重来最优地融合站点、卫星和再分析数据。在 1998-2017 年期间,以每日时间尺度和 0.1° 的空间分辨率生成了一个多源降水 (MSP) 数据集横跨青藏高原。与其他四颗卫星产品相比,MSP与标准观测的日降水相关系数(CC)最高(0.74),均方根误差第二低,表明MSP的质量和数据合并的有效性方法。我们使用分布式水文模型进一步评估了青藏高原长江和黄河源头测量不佳的不同降水产品的水文效用。在 2004-2014 年期间,MSP 实现了每日流量模拟的最佳 Nash-Sutcliffe 效率系数(超过 0.8)和 CC(超过 0.9)。此外,基于多重搭配评估,MSP 在未测量的西部 TP 上表现最好。该合并方法可应用于全球其他数据稀缺地区,为水文研究提供高质量的降水数据。整个 TP 的左下角的经纬度、行数和列数以及网格单元信息都包含在每个 ASCII 文件中。
洪仲坤, 龙笛
针对青藏高原泛三江并流区的17.9万km2的区域,通过Sentinel-1升降轨,以及Palsar-1升轨三种SAR数据进行InSAR变形观测,根据获取的InSAR变形图像,结合地貌和光学影像特征进行综合解译。共识别得到海拔4000m以下的活动性滑坡949处。需要注意的是,因不同SAR数据的观测角度、敏感度和观测时相的差异,同一滑坡用不同数据解译存在一定的差异,在滑坡的范围、边界方面需要借助地面和光学影像进行修正。滑坡InSAR识别比例尺的概念与传统空间分辨率不同,主要依靠变形强度,因此一些规模较小,但与背景相比变形特征突出,整体性强,与地物具有逻辑空间关系的滑坡也能得以解译(配合SAR的强度图、地形阴影图、光学遥感影像为地物参照)。本次最小解译区域可达几个像素,如参考怒江沿江公路解译了一处只有4个像素的公路边坡滑坡。
姚鑫
本数据为关于四川省北川地区、云南省鲁甸地区、贵州省毕节地区的影像信息数据,可用于构建山体震裂崩塌遥感影像的解译识别标志,揭示山体震裂崩塌形成的一般形式,评估具体山体震裂崩塌的危险等级;数据可结合DEM数据用于挖掘山体震裂崩塌的发育机制等。可在此基础上进一步研究,完善研究山体震裂崩塌的智能识别理论及形成机制,为寻找其他相似类型震裂崩塌物源提供指示意义。本项目部分原始数据可用于全面了解鲁甸区域山体震裂崩塌危险性等。
韩征
该数据集包含青藏高原160个湖泊(面积大于40平方公里)1978-2017年的连续日尺度湖面温度(MOD11A1的日间湖温、MOD11A1的夜间湖温、基于MOD11A1日均湖面温度、基于模型的湖面温度)。数据集生产过程首先改进以能量平衡为基础的半物理湖表水温模型(air2water)以实现冰期与非冰期连续模拟,并以MOD11A1产品提取的全湖平均表面温度作为模型的率定数据。数据集与4个湖泊的实测湖面温度相比相关性大于0.9,均方根误差小于2.5℃。该数据集为认知青藏高原湖泊水热平衡、水生生态系统过程及其对气候变化响应提供数据支撑。
郭立男, 吴艳红, 郑红星, 张兵, 文梦宣
植被指数(NDVI, Normalized Difference Vegetation Index)可以准确反映地表植被覆盖状况。目前,基于SPOT/VEGETATION以及MODIS等卫星遥感影像得到的NDVI时序数据已经在各尺度区域的植被动态变化监测、土地利用/覆被变化检测、宏观植被覆盖分类和净初级生产力估算等研究中得到了广泛的应用。藏东南1KM植被指数(NDVI)空间分布数据集是在MODIS(https://ladsweb.modaps.eosdis.nasa.gov/)16天1KM地表反射率数据(MOD13)基础上,采用最大值合成法生成的2000年以来的月度植被指数数据集。该数据集有效反映了藏东南地区在空间和时间尺度上的植被覆盖分布和变化状况,对植被变化状况监测、植被资源合理利用和其它生态环境相关领域的研究有十分重要的参考意义。月度NDVI数据为每月NDVI数据数值的最大值,数据获取时间为2000年2月—2018年12月。下载的数据为GRID格式,空间分辨率为1km。
王浩
本数据为通过自动化雨量站、泥位监测仪、撞线传感器测量产生的纳底沟泥石流综合监测数据集(2021年)。以上数据采集点为四川省阿坝藏族羌族自治州九寨沟县景区纳底沟泥石流监测点。监测数据主要在四川省国土空间生态修复与地质灾害防治研究院完成数据分析。使用的仪器包括DD-ZXCG-001撞线传感器、DD-YLJ-001自动化雨量站、DD-NWJ-001泥位监测仪。采集时间为2021年。
张群
本数据为东南亚地区2015年的地表类型数据,空间分辨率为30米,数据类型为NetCDF,变量名为“land cover type”。该数据基于FROM-GLC数据加工而成,通过对原始影像的拼接、裁剪得到覆盖东南亚的地表类型数据,剔除东南亚地区不存在的雪冰等下垫面类型并重新整合图例。修改下垫面类型编码生成包含东南亚的地表类型数据。该数据提供耕地、森林、草地、灌木、湿地、水体、不透水面、及裸地共8种下垫面的信息。数据总体精度为71% (Gong et al., 2019),可为水文模型、区域气候模式等提供东南亚地区的下垫面信息。
刘俊国
本数据集是一个包含接近35年(1984-2018)的全球高分辨率光合有效辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于生态过程模拟和全球碳循环的理解。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据、MERRA-2气溶胶数据以及MODIS反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来生态过程模拟的研究和全球二氧化碳通量的估算。
唐文君
基于环境敏感区指数(ESAI)方法,计算获得2021年阿拉伯半岛栅格荒漠化风险数据。ESAI方法考虑土壤,植被,气候和管理质量,是监测荒漠化风险最广泛的方法之一。根据ESAI指标框架,选择了14个指标计算四个质量领域,每个质量指数均由几个指标参数计算获得。参考前人研究,确定每个参数分类及其阀值。然后,根据每个类别在荒漠化的敏感性中的重要性以及与荒漠化过程的开始或不可逆转的退化关系,把每个类别分配了1(最低敏感度)和2(最高敏感度)之间的敏感性得分。关于如何选取指标以及与荒漠化风险和得分相关性,在Kosmas的研究中提供了更全面的描述。主要指标数据集来源于联合国粮农组织的世界土壤数据,欧空局的土地覆盖数据和AVHRR数据。所有栅格数据集重采样到500m并合成年度值。尽管验证综合评估指数存在困难,但根据ESAI值的时空比较,对荒漠化风险进行了间接验证,包括对ESAI与稀疏植被和草地转变关系的定量分析和分析ESAI与植被净初级生产力之间的关系。验证结果表明阿拉伯半岛的荒漠化风险数据精度可靠。
许文强
此数据集是基于中科院中国土地利用现状遥感监测数据集,经过裁剪、拼接等操作得到的1985年祁连山国家公园土地利用类型的数据。数据生产制作是利用Landsat TM/ETM遥感影像为主要数据源,通过人工目视解译生成,得到的矢量数据。土地利用类型包括耕地、森林、灌木林、草地、湿地、水体、苔原、人造表面、裸地、冰川和永久积雪这10个一级类型。可以分析祁连山区域历史的土地利用类型,并结合当前的土地利用类型数据,分析祁连山区域土地利用类型的变化。
年雁云
此数据包含1992年-2020年时间段的中亚,南亚和中南半岛地区的空间分辨率为300m土地覆盖数据,包含10个一级类别,由原数据的二级类别合并而来。数据基于欧空局的1992年-2020年时间段地表覆盖产品 CCI-LC,对耕地、建设用地和水体等地类进行修正。基于清华大学全球土地覆被数据(FROM-GLC,30m栅格)、美国NASA的MODIS全球土地覆被数据(MCD12Q1,500m栅格)、美国地质调查局USGS的全球耕地数据(GFSAD30,30m)、日本全球林地数据的(PALSAR/PALSAR-2,25m)的一致区获取训练样本,应用谷歌地球数字引擎及其随机森林算法,对研究区待修正区域进行机器判别,获得修正的土地覆被产品。应用2019年和2020年的谷歌地球高清影像,对耕地、建设用地和水体变化区域的精度进行分层随机抽样验证,三种地类分别抽取了1200个、共计3600个,相比 CCI-LC数据,本修正产品在该变化区域的精度提升了11%到26%。
许尔琪
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月南极冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE-FO (2018年六月至今)。由于GRACE和GRACE-FO之间有一年左右数据间断,我们额外采用了由欧洲空间局ESA的Swarm星座GPS数据反演得到的重力场数据(2013年12月至2019年12月)。所采用GRACE重力场数据为德州大学奥斯丁空间研究中心(CSR)、德国地学研究中心(GFZ)、美国宇航局喷气推进实验室(JPL)以及俄亥俄州立大学(OSU)四家机构发布产品的加权平均模型。GRACE数据后处理包括:用SLR数据解算结果替换GRACE低阶重力场参数(degree-1, C20和C30),去条带滤波,300公里高斯平滑,ICE6-G_D(VM5a)GIA模型,信号泄露误差改正,椭球误差改正等。
张宇, 沈嗣钧
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件