地表温度(Land Surface Temperature,LST)是地表能量平衡研究的关键参数,被广泛用于气象、气候、水文、农业和生态等领域研究。卫星(热红外)遥感作为获取全球和区域尺度LST信息的重要手段,容易受到云层覆盖和其他大气条件的影响,导致LST遥感产品时空不连续,极大限制了LST遥感产品在相关研究领域的应用。 本数据集的制备首先基于经验正交函数插值方法,利用Terra/Aqua MODIS 地表温度产品重建理想晴空条件下的LST,然后使用累积分布函数匹配方法融合 ERA5-Land再分析数据获取全天候条件下的LST。该方法充分利用了原始MODIS遥感产品的时空信息以及再分析数据中的云影响信息,缓解了云层覆盖对LST估算的影响,最终重建得到较高质量的全球0.05°时空连续的理想晴空和全天候LST数据集。 本数据集不仅实现了时空无缝覆盖,并且具有良好的验证精度。重建的理想晴空LST数据在全球17种土地覆盖类型实验区内,平均相关系数(R)为0.971,偏差(Bias)为-0.001 K至0.049 K,均方根误差(RMSE)为1.436 K至2.688 K。重建的全天候 LST 数据与地面站点实测数据的验证结果:平均 R 为 0.895,Bias为0.025 K 至 2.599 K, RMSE为4.503 K至7.299 K。 本数据集的时间分辨率为逐日4次,空间分辨率为0.05°,时间跨度为2002年-2020年,空间范围覆盖全球。
赵天杰, 余沛
地表温度(Land surface temperature, LST)是地球表面与大气之间界面的重要参量之一。它既是地表与大气能量交互作用的直接体现,又对于地气过程具有复杂的反馈作用。因此,地表温度不仅是气候变化的敏感指示因子和掌握气候变化规律的重要前提,还是众多模型的直接输入参数,在许多领域有广泛的应用,如气象气候、环境生态、水文等。伴随地学及相关领域研究的深入和精细化,学术界对卫星遥感的全天候地表温度(All-weather LST)具有迫切的需求。 本数据集的制备方法是一种基于新型地表温度时间分解模型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性,最终重建得到较高质量的全天候地表温度数据集。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。当以MODIS LST为参考时,该数据集在白天和夜间的平均偏差(MBE)为0.08K至0.16K,偏差标准差(STD)为1.12K至1.46K。基于分布于黑河流域、东北、华北和华南地区的15个站点实测数据的检验结果表明,其MBE为-0.06K至-1.17K,RMSE为1.52K至3.71K,且在晴空与非晴空条件下无显著区别。 本数据集的时间分辨率为逐日2次,空间分辨率为1km,时间跨度为2000年-2021年(注:通过外推方式将缺少Aqua MODIS LST产品时段内的全天候地表温度补齐);空间范围包括我国陆域的主要区域(包含港澳台地区,暂不包含我国南海诸岛)及周边区域(72°E-135°E,19°N-55°N)。本数据集的缩写名为TRIMS LST(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST),以便用户使用。需要说明的是,TRIMS LST的空间子集TRIMS LST-TP(中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2)同步在国家青藏高原科学数据中心发布,以减少相关用户数据下载和处理的工作量。
周纪, 张晓东, 唐文彬, 丁利荣, 马晋, 张旭
脆弱性是指由于系统对系统内外扰动的敏感性以及缺乏应对能力从而使系统的结构和功能容易发生改变的一种属性,即高温热浪发生时区域应对灾害以减少损失的能力。本数据集以2015年为基准年,泛第三极区域路网数据、GDP数据、医疗设施空间分布数据、植被覆盖度数据、水体分布数据为基础数据。采取欧式距离计算法明确区域内路网、水体及医疗设施的空间分布情况,并以距道路距离、距水体距离、距医疗设施距离、GDP及植被覆盖度为评价指标,采取等权重叠加法评估各节点高温热浪脆弱性。为消除单位差异性带来的影响,评估前对各指标层数据进行归一化处理,最后利用自然间断点法划分各节点脆弱性等级。
葛咏, 杨飞, 刘庆生
数据来源于美国国家环境信息中心(National Centers for Environmental Information, NCEI),该中心提供了全球范围内各站点自建站以来的气象记录,包括气温、风速、露点和降水等信息。达卡市附近有4个有记录的站点。先从NCEI下载了全球范围内站点监测数据,再根据经纬度筛选达卡市范围内的4个站点。该数据级记录了2016年1月1日-2019年12月31日的日气象站点监测数据。
葛咏, 杨飞
本数据集的数据源为Landsat-5卫星的大气顶层反射率数据第1、2、3波段。Landsat卫星为太阳同步卫星,卫星由北向南运行,地球自西向东旋转,卫星每天绕地球14.5圈,每圈在赤道西移159km,每16天重复覆盖一次。本数据集主要覆盖孟加拉国达卡市,基于2010年的Landsat-5大气顶层反射率数据,本数据从地理空间数据云平台下载,利用ArcGIS对数据进行波段合成,最终得到了TIFF格式的达卡区域2010的30米分辨率多光谱遥感影像数据。
葛咏, 杨飞
本数据集的数据源为Landsat-5、Landsat-8卫星的大气顶层反射率数据第1至7波段。Landsat卫星为太阳同步卫星,重复周期为16天。本数据集以主要覆盖东南亚和中东的泛第三极关键节点区域为研究区域,基于2000至2016年的Landsat-5及Landsat-8大气顶层反射率数据,利用Google Earth Engine云计算平台对数据进行研究区的掩模裁剪,最终得到了TIFF格式的泛第三极区域2000-2016的30米分辨率多光谱遥感影像数据。
葛咏, 凌峰, 张一行
青藏高原是全球气候变化的敏感区域。地表温度(Land Surface Temperature, LST)作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气象气候、水文、生态等领域的研究中。青藏高原的陆地-大气相互作用等研究,迫切需要较长时间序列和较高时空分辨率的全天候地表温度数据集。然而,该区域较为频繁的云覆盖特征,使现有卫星热红外遥感地表温度数据集的使用受到较大的局限。 相较于2019年发布的前一个版本——中国西部逐日1km空间分辨率全天候地表温度数据集(2003-2018)V1,本数据集(V2)采用了一种新的制备方法,即基于新型地表温度时间分解模型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。该方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。以MODIS LST为参考值时,该数据集在白天和夜间平均偏差(MBE)分别为-0.28 K和-0.29 K,偏差标准差(STD)分别为1.25 K和1.36 K。基于青藏高原和黑河流域的6个站点实测数据的检验结果表明,晴空条件下,本数据集在白天/夜间与实测LST均具有高度的一致性,其MBE为-0.42~0.25 K/-0.35~0.19 K;均方根误差 (RMSE)为1.03~2.28 K/1.05~2.05 K;非晴空条件下,本数据集在白天/夜间的MBE为-0.55~1.42 K/-0.46~1.27 K;RMSE为2.24~3.87 K/2.03~3.62 K。与V1版本的数据相比,两种全天候地表温度均在空间维度上表现除了空间无缝(即无缺失值)的特性,且在大部分区域内,两种全天候地表温度的空间分布和幅值均与MODIS地表温度高度一致。然而,在AMSR-E/AMSR2轨道间隙亮温缺失的区域内,V1版本的地表温度产生了低估。TRIMS地表温度与V1版本地表温度在AMSR-E/AMSR2轨道间隙外的质量接近,而在轨道间隙内前者的质量更加可靠。因此,建议用户使用V2版本。 本数据集的时间分辨率为逐日2次,空间分辨率为1km,时间跨度为2000年-2021年(注:通过外推方式将缺少Aqua MODIS LST产品时段内的全天候地表温度补齐)。本数据集的空间范围包括青藏高原为核心的我国西部及周边地区(72°E-104°E,20°N-45°N)。因此,本数据集的缩写名为TRIMS LST-TP(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST – Tibetan Plateau),以便用户使用。
周纪, 张晓东, 唐文彬, 丁利荣, 马晋, 张旭
本数据集包括祁连山地区1982年、1985年、1990年、1995年和2000年每月0.05°×0.05°地表温度产品,2005年、2010年、2015年、2017年和2018年每月0.01°×0.01°地表温度产品,2018年每日0.01°×0.01°地表温度产品。采用劈窗(split-window,SW)算法,利用AVHRR热红外通道(通道4:10.5µm至11.3µm;通道5:11.5µm至12.5µm)的亮温数据(分辨率:0.05°),MYD21A1的温度数据(分辨率:0.01°)以及相关辅助数据,实现祁连山地区地表温度月/日合成产品的生产。参与反演的辅助数据包括IGBP地表分类数据,AVHRR NDVI产品,MERRA再分析数据,ASTER GED数据,以及经/纬度和儒略日信息。
历华
“水权框架下黑河流域治理的水文-生态-经济过程耦合与演化”(91125018)项目数据汇交-MODIS产品-中国西北地区土利用数据(2000-2010) 1.数据概述:中国西北地区土利用数据(2000-2010) 2.数据内容:用MODIS得到的2000-2010年中国西北地区黑河流域、疏勒河流域石羊河流域土利用数据
王忠静
本数据为2002.07.04-2010.12.31青藏高原地区MODIS逐日无云积雪产品。由于积雪和云的反射特性,使用光学遥感监测积雪受到天气的严重干扰。本产品是在综合了目前最常用的去云算法的基础上,利用MODIS逐日积雪产品和被动微波数据AMSR-E雪水当量产品,开发的青藏高原地区逐日无云积雪产品,准确度较高,该产品对实时监测青藏高原雪盖动态变化具有重要的使用价值。 投影方式:Albers Conical Equal Area(阿尔伯斯等积投影) 基准面:D_Krasovsky_1940 空间分辨率:500 m 数据格式:tif 命名规则:maYYMMDD.tif,其中ma代表数据名称;YY代表年(01表示2001,02表示2002……);MM代表月(01表示1月,02表示2月……);DD表示日(01表示1日,02表示2日……)。
黄晓东
本数据集包括中国地区2002-2008年,经纬度投影,0.25度分辨率的被动微波遥感亮度温度数据。 1、数据处理过程: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method。 2、数据格式: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3、数据命名: ID2rx-AMSRE-aayyyydddp.vnn.ccc(China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4、切割范围: Corner Coordinates: Upper Left ( 60.0000000, 55.0000000) ( 60d 0'0.00"E, 55d 0'0.00"N) Lower Left ( 60.0000000, 15.0000000) ( 60d 0'0.00"E, 15d 0'0.00"N) Upper Right ( 140.0000000, 55.0000000) (140d 0'0.00"E, 55d 0'0.00"N) Lower Right ( 140.0000000, 15.0000000) (140d 0'0.00"E, 15d 0'0.00"N) Center ( 100.0000000, 35.0000000) (100d 0'0.00"E, 35d 0'0.00"N) Origin = (60.000000000000000,55.000000000000000) 5、数据投影: GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], TOWGS84[0,0,0,0,0,0,0], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.0174532925199433, AUTHORITY["EPSG","9108"]], AUTHORITY["EPSG","4326"]]
Mary Jo Brodzik, Matthew Savoie, Richard Armstrong, Ken Knowles
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件