该数据集包含2021年1月1日至12月31日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集为相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 谭俊磊, 任志国, 李新
本数据为黑河中游大满站(38.85551N,100.37223E)制种玉米2020年生长期的植被覆盖度(%)、生物量(克/株)、叶面积指数以及株高(厘米)的地面连续观测数据集。地面观测在3块样地开展:其中,生物量包括地上生物量鲜重和干重、地下生物量鲜重和干重(根的鲜重和干重)的观测,植被覆盖度采用数码相机拍照法进行观测,叶面积指数采用LAI 2200进行观测,株高采用卷尺进行观测。观测时间段为2020年5月31日-9月22日,观测参数在7月31日以前每5天观测一次,7月31后每10天观测一次,整个生长期共开展了19次观测。该数据集可为地表植被参数反演和验证提供数据基础。
耿丽英, 车涛
本数据为黑河中游大满站(38.85551N,100.37223E)制种玉米2019年生长期的植被覆盖度(%)、生物量(克/株)、叶面积指数以及株高(厘米)的地面连续观测数据集。地面观测在3块样地开展:其中,生物量包括地上生物量鲜重和干重、地下生物量鲜重和干重(根的鲜重和干重)的观测,植被覆盖度采用数码相机拍照法进行观测,叶面积指数采用LAI 2200进行观测,株高采用卷尺进行观测。观测时间段为2019年5月17日-9月23日,其中LAI自6月11日开始,观测参数在7月31日以前每5天观测一次,7月31后每10天观测一次,整个生长期共开展了20次观测(LAI为15次)。该数据集可为地表植被参数反演和验证提供数据基础。
耿丽英, 车涛
本数据为黑河中游大满站(38.85551N,100.37223E)大田玉米2018年生长期的植被覆盖度(%)、生物量(克/株)、叶面积指数以及株高(厘米)的地面连续观测数据集。地面观测在3块样地开展:其中,生物量包括地上生物量鲜重和干重、地下生物量鲜重和干重(根的鲜重和干重)的观测,植被覆盖度采用数码相机拍照法进行观测,叶面积指数采用LAI 2200进行观测,株高采用卷尺进行观测。观测时间段为2018年5月26日-9月26日,其中LAI自5月31日开始,观测参数在7月31日以前每5天观测一次,7月31后每10天观测一次,整个生长期共开展了22次观测(LAI为20次)。该数据集可为地表植被参数反演和验证提供数据基础。
耿丽英, 车涛
本数据为黑河中游大满站(38.85551N,100.37223E)制种玉米2017年生长期的植被覆盖度(%)、生物量(克/株)、叶面积指数以及株高(厘米)的地面连续观测数据集。地面观测在3块样地开展:其中,生物量包括地上生物量鲜重和干重、地下生物量鲜重和干重(根的鲜重和干重)的观测,植被覆盖度采用数码相机拍照法进行观测,叶面积指数采用LAI 2200进行观测,株高采用卷尺进行观测。观测时间段为2017年5月15日-9月21日,其中LAI自6月6日开始,观测参数在7月31日以前每5天观测一次,7月31后每10天观测一次,整个生长期共开展了21次观测(LAI为17次)。该数据集可为地表植被参数反演和验证提供数据基础。
耿丽英, 车涛
本数据为黑河中游大满站(38.85551N,100.37223E)制种玉米2016年生长期的植被覆盖度(%)、生物量(克/株)、叶面积指数以及株高(厘米)的地面连续观测数据集。地面观测在3块样地开展:其中,生物量包括地上生物量鲜重和干重、地下生物量鲜重和干重(根的鲜重和干重)的观测,植被覆盖度采用数码相机拍照法进行观测,叶面积指数采用LAI 2200进行观测,株高采用卷尺进行观测。观测时间段为2016年5月19日-9月5日,其中LAI自5月30日开始,观测参数在7月31日以前每5天观测一次,7月31后每10天观测一次,整个生长期共开展了18次观测(LAI为9次)。该数据集可为地表植被参数反演和验证提供数据基础。
耿丽英, 车涛
本数据为黑河中游大满站(38.85551N,100.37223E)制种玉米2015年生长期的植被覆盖度(%)、生物量(克/株)、叶面积指数以及株高(厘米)的地面连续观测数据集。地面观测在3块样地开展:其中,生物量包括地上生物量鲜重和干重、地下生物量鲜重和干重(根的鲜重和干重)的观测,植被覆盖度采用数码相机拍照法进行观测,叶面积指数采用LAI 2200进行观测,株高采用卷尺进行观测。观测时间段为2015年5月10日-9月21日,其中LAI自5月25日开始,观测参数在7月31日以前每5天观测一次,7月31后每10天观测一次,整个生长期共开展了21次观测(LAI为18次)。该数据集可为地表植被参数反演和验证提供数据基础。
耿丽英, 车涛
该数据集包含2020年1月1日至2010年12月31日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于物候期的计算,首先,根据感兴趣区计算物候指标,如相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值)。然后对数据进行质量控制、无效值填充和滤波平滑。最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等。本数据集为该站点2020年相对绿度指数(GCC)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 谭俊磊, 任志国, 李新
该数据集包含了2020年7月10日至2020年9月20日的黑河水文气象观测网中游大满超级站叶面积指数观测数据。站点(100.376° E, 38.853° N)位于甘肃省张掖市大满灌区内,海拔1556m,下垫面是玉米。观测样方共计6个,每个样方大小约30m×30m,经纬度分别为(100.376°E, 38.853°N)、(100.377° E, 38.858°N)、(100.374°E, 38.855°N)、(100.374°E, 38.858°N)、(100.371°E, 38.854°N)、(100.369°E, 38.854°N)。每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 屈永华, 车涛, 徐自为, 谭俊磊, 任志国, 李新
地表反照率是地表能量平衡的重要参量之一。本数据集为2020年植被生长季(6-10月)逐月的黑河流域典型站点无人机遥感地表反照率数据(花寨子站8月份的数据由于实验开展的技术问题缺失)。地表反照率算法为统计回归方法,即基于6S模型和大量的典型地物光谱反射率数据,建立的从窄波段反射率到宽波段反照率的经验回归模型。将该回归模型应用于无人机多光谱遥感传感器获得的地表反射率,最终得到0.2 m空间分辨率的地表反照率数据。本数据集经过了辐射定标、几何校正,与地面站点实测数据的验证结果显示,均方根误差为0.029。本数据集提供了超高分辨率的地表反照率数据,可以作为卫星遥感尺度和地面观测尺度之间的“桥梁”,并为从事高分辨率和超高分辨率遥感数据工作的科研工作者提供数据支持。
刘绍民, 周纪, 董惟琛
地表温度是地表能量平衡的重要参量之一。本数据集为2019年7-9月逐月的黑河流域典型站点无人机遥感地表温度数据;飞行使用大疆M600 pro无人机搭载FLIR VUE pro热像仪,分别以湿地内的SD站、绿洲内的DM站和荒漠内的HZ站为中心,观测了地表温度获取了地表亮温图像,无人机的飞行高度约300m,热像仪的像素为336x256,图像的空间分辨率为0.4m。地表温度反演算法为改进的单通道算法,将该算法应用于无人机热红外遥感传感器获取的地表亮温数据,最终得到0.4m空间分辨率的地表温度数据。
周纪, 刘绍民, 王子卫
地表反照率是地表能量平衡的重要参量之一。本数据集为2019年植被生长季逐月的黑河流域典型站点无人机遥感地表反照率数据。地表反照率算法为统计回归方法,即基于6S模型和大量的典型地物光谱反射率数据,建立的从窄波段反射率到宽波段反照率的经验回归模型。将该回归模型应用于无人机多光谱遥感传感器获得的地表反射率,最终得到0.2 m空间分辨率的地表反照率数据。本数据集经过了辐射定标、几何校正,与地面站点实测数据的验证结果显示,均方根误差为0.049。本数据集提供了超高分辨率的地表反照率数据,可以作为卫星遥感尺度和地面观测尺度之间的“桥梁”,并为从事高分辨率和超高分辨率遥感数据工作的科研工作者提供数据支持。
周纪, 刘绍民, 董惟琛
归一化植被指数在研究植被长势、地物分类方面有重要作用。本数据集为2019年植被生长季逐月的黑河流域典型站点无人机遥感NDVI(Normalized Differential Vegetation Index)数据,空间分辨率为0.2 m。NDVI数据获取流程为将无人机拍摄后的单幅影像通过pix4D mapper进行拼接,并由pix4D mapper自动进行拼接后影像的植被指数计算。最后将pix4D mapper拼接的单航次影像利用ArcGIS镶嵌得到整个飞行区域影像。
周纪, 刘绍民, 金子纯
我们生产了2012年黑河流域1KM分辨率的地表光合有效辐射(PAR),太阳辐射(SSR)和净辐射(NR)产品。时间分辨率从瞬时,到逐时和逐日累计。同时也生产了逐日的辅助数据,包括气溶胶光学厚度、水汽含量、NDVI、雪盖和地表反照率。其中,PAR和SSR通过结合静止气象卫星和极轨卫星MODIS产品,用查找表的方法来直接反演。NR通过分析地表净短波辐射和净辐射之间的关系来计算。半小时一次的瞬时产品被加权平均和积分得到逐时和日累计产品。 最终的数据产品以HDF格式打包。HDF文件里有数据以及数据集的详细说明。放了方便使用,简介文档里给出了一段读取HDF格式的IDL代码和一个HDF专业软件! 如果在您的论文中用到了此数据,请引用以下三篇参考文献!
黄广辉
黑河中游植被样方调查数据由2013年与2014年两个年度的野外实测数据组成,包括调查样方的植被情况和土壤数据。每个调查样方的数据包含以下信息:样方经纬度、样方大小、高程、样方概况、植物名称、植物高度、冠幅、盖度、总盖度、株数、株距、行距、大行距、胸径。土壤按照地面以下0-100cm分为6层,分别为0-10cm、10-20cm、20-40cm、40-60cm、60-80cm、80-100cm。
王子丰, 徐宗学, 张淑荣
本数据以黑河中游灌区的玉米作为观测对象,观测仪器为Licor-6400 XTR,地点选在HiWATER联合试验超级站的附近。通过非控制实验和控制实验(控制二氧化碳和光强)观测玉米的光合作用参数,时间从2012年6月22日-8月24日。
李彦辉, 彭红春, 杨保
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件