1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序EVI。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过EVI的计算公式进行生产的,即并在NDVI计算公式的基础上引入了背景调节参数C1,C2和大气修正参数L进行计算的。3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:EVI相比于NDVI具有较强的抗大气干扰能力以及抗噪音能力,更适用于气溶胶含量较高的天气状况下,以及植被茂盛区。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序MSAVI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过MSAVI的计算公式进行生产的,即在SAVI的基础上,针对SAVI在植被覆盖茂盛区表现不敏感的问题进行了改进,具体的计算方法参照Qi,1994文献;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数在植被茂盛覆盖区域较为稳定,而在植被稀疏区表现不敏感。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NBR产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NBR的计算公式进行生产的,即利用近红外波段和短波红外波段的比值来增强火烧迹地的特征信息,具体计算公式为(近红外波段-短波红外波段2)/(近红外波段+短波红外波段2);3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数常被用于火烧迹地信息提取以及监测火烧区域植被的恢复状况。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NDMI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDMI的计算公式进行生产的,即利用近红外与短波红外之间的差异来定量化反映植被冠层的水分含量情况;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:NDMI与冠层水分含量高度相关,可以用来估计植被水分含量,而且NDMI与地表温度之间存在较强的相关性,因此也常用于分析地表温度的变化情况。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NDVI。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDVI的计算公式进行生产的,即通过计算近红外波段和红波段之间的差异来定量化植被的生长状况,具体公式为:(近红外波段-红波段)/(近红外波段+红波段);3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数可反映植被的健康情况及植被的长势,由于计算简单,指示性好,被广泛应用于农业、林业、生态环境等领域,同时也是生态物理参数反演的重要输入参数,是目前应用最为广泛的植被指数之一。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NDWI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDWI的计算公式进行生产的,即利用绿光波段和近红外波段的差异比值来增强水体信息,并减弱植被、土壤、建筑物等地物的信息;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数便于地表水体信息有效提取,广泛应用于水资源、水文以及林农业等领域。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序SAVI。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过SAVI的计算公式进行生产的,即并在NDVI计算公式的基础上引入了土壤调节因子S进行计算的。3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数在植被稀疏区域较为稳定,而在植被覆盖茂盛区域不敏感。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序SI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过SI的计算公式进行生产的,即根据红光波段和蓝光波段开展乘积平方根计算即可得到,基于红光波段和蓝光波段能够很好地反映土壤盐分的原理;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数能很好的反映土壤的盐分程度,可用于定量化评价盐渍化土壤。
彭燕
数据内容:该数据集产品包含青藏高原地区30米分辨率的水体悬浮物浓度产品,可作为青藏高原地区生态系统相关研究的关键参数。数据来源及加工方法:产品反演主要基于Landsat系列数据,通过提取有效的离水辐射或离水反射率,从而对水体成分进行反演。本产品是使用经验/半经验方法进行水中悬浮物浓度信息提取的初步结果。数据质量:整体精度较高,后续将结合科考实测数据对产品进一步优化。数据应用成果及前景:数据集将持续更新,可用于青藏高原地区生态系统变化研究与分析。
刘慧婵
数据内容:该数据集产品包含青藏高原地区10米分辨率的不透水面产品,可作为青藏高原地区生态系统相关研究的关键参数。数据来源及加工方法:产品反演主要基于Sentinel系列数据,从联合特征出发,结合深度空间特征、长时序的NDVI等指数特征、地形特征,采用随机森林模型实现不透水面信息提取。数据质量:整体精度较高。数据应用成果及前景:数据集将持续更新,可用于进一步明晰人类活动对青藏高原地区生态系统的影响。
王桂周
在青海和西藏的荒漠带实地调查了52个样点,于2019年和2020年7-8月植被生长最大时期对植被地上生物量进行实地采样。同时,利用手持 GPS设备,记录了实验位点的经度、纬度和海拔等信息。样方的野外设置方法为:选取一块植被均匀的地段,当植被相对茂盛时样地设置为10米x10米的正方形样地,当植被相对稀疏时样地设置为30米x30米的正方形样地或者30米x90米的长方形样地;在设置好的样地中随机投掷3-5个小样方框(1米x1米),采用样方收割法收集植物样品:在1平方米的样方面积内,登记植物的物种名目,每个物种的株数等信息。并将样方内的各种植物分种齐地面刈割,带回实验室内, 在恒温干燥箱内65℃条件下烘干至恒重, 测定植物样本的干重,计算样方地上生物量。 此外,还通过采样点的经度纬度提取了该52个样点的2种遥感净初级生产力数据。(1) 2000-2018年的增强型植被指数(EVI),并计算年整合增强型植被指数(iEVI),iEVI与净初级生产力(NPP)具有高相关性,可作为净初级生产力的替代指标(He et al. 2021, Science of The Total Environment)。(2) 2001-2020年遥感净初级生产力(NPP)及其质量控制百分比(QC),遥感NPP数据来自MOD17A3HGF Version 6 product (https://lpdaac.usgs.gov/products/mod17a3hgfv006/),由净光合值(总初级生产力-植物维持呼吸)计算得到。植被覆盖度低的样点,遥感净初级生产力可能存在空值(NA)。
叶建圣
本数据为“Major turnover of biotas across the Oligocene/Miocene boundary on the Tibetan Plateau” (中文标题“青藏高原渐新世——中新世界线生物群的重大转换”)论文的全文相关图片数据。 数据来源为论文作者绘制或拍摄的原创图片的高清原图版本。 数据加工方式:原始图片未经二次加工。 数据可作为青藏高原隆升、环境及生物群变化等研究的参考资料。 该论文数据可在征得论文相关作者同意及注明出处的前提下引用。
邓涛
1)数据内容:本数据集包含2010-2019年青藏高原地区30米分辨率叶面积指数遥感产品。2)数据来源及加工方法:利用Landsat时间序列数据和物理机理模型反演得到的年最大合成叶面积指数产品。3)数据质量描述: 利用模拟数据的验证结果表明,产品的root-mean-square error(RMSE)约为1.16。4) 数据应用成果及前景:叶面积指数高度综合了植被的水平覆盖状况和垂直结构,是植被冠层的重要结构参数,该数据集可为陆面过程模拟、资源调查、生态环境监测、全球变化研究等相关领域的研究和应用提供数据产品支撑。
张兆明
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序FVC产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDVI的像元二分模型进行反演的,裸土的NDVI值设为0.01,纯植被的NDVI值设为0.88;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:植被覆盖度是生态学的重要参数,广泛应用于生态环境监测研究。
张兆明
青藏高原鸟类的分布数据信息,是2020年12月至2021年01月期间对青藏高原鸟类分布记录的野外调查数据,调查团队主要由中国科学院动物研究所,西藏高原生物研究所,中国科学院微生物研究所,西藏自然博物馆等单位的科研人员共同组成。主要区域为雅鲁藏布江中下游地区及纳木错湖东岸,包括拉萨、林芝、山南、日喀则等地市的多个县区(East: 88.09E,West: 94.52E,South: 28.76N,North: 30.77N)。观测方法以样线法,样点法,和多样点同步计数法为主。观测器材有双筒望远镜,单筒望远镜,长焦相机等。数据内容包括物种名、经度、维度、观测时间、观测人等信息。
宋刚
该数据集是基于对四川、青海、西藏道路沿线实地观测调查内容所整理汇总,在道路沿线选取100*100m的样地,在样地中根据植被分布情况选择1m*1m或2m*2m的样方。调查内容涉及调查样地的天气、地理位置、地貌特征、坡向、坡位、土壤类型、植被类型、植物群落名称、地表特征、样地人类活动方式及样地内植被状况。针对样地基本信息和植被状况的调查采用了人为观测及工具测量的方法。植被状况中植被名称参考“青海省草本植物种类”主要调查其高度、盖度、生活型等信息。通过该数据集的调查结果汇总可作为补充青藏高原草本植物多样性的一个参考依据。该数据集是实际样地植被调查内容,每天一个文件,文件命名方式为:年+天,如20200712表示2020年7月12日的调查表内容,202007023表示2020年7月23日的调查表内容。
李景吉
数据内容:该数据集产品包含青藏高原地区30米分辨率的不透水面产品,可作为青藏高原地区生态系统相关研究的关键参数。数据来源及加工方法:产品反演主要基于Landsat系列数据,从联合特征出发,结合深度空间特征、长时序的NDVI等指数特征、地形特征,采用随机森林模型实现不透水面信息提取。数据质量:整体精度较高,多数地区优于80%。数据应用成果及前景:数据集将持续更新,可用于进一步明晰人类活动对青藏高原地区生态系统的影响。
王桂周
1)数据内容:本数据集包含从1980s-2019年青藏高原地区长时序30米分辨率火烧迹地产品。2)数据来源及加工方法:基于时间序列Landsat地表反射率和火烧迹地敏感光谱参量,利用机器学习算法研发并生产的30米分辨率火烧迹地产品;3)数据质量描述:产品总体精度在90%以上。4) 数据应用成果及前景:该数据集可为火灾监测、碳排放研究、生态环境监测、全球变化研究等相关领域的研究和应用提供数据产品支撑。
张兆明
地上生物量(Aboveground biomass,AGB)是衡量生态系统生产力的一个重要指标。该数据集提供了2015年青藏高原地区30m分辨率的森林地上生物量。该生物量数据采用Landsat系列数据,基于地面实测数据和部分文献资料,同时结合森林树高数据,森林类型分类(包括针叶林、阔叶林和混合林)等估算而成。通过数据公开和免费下载服务的方式,为青藏高原森林生态系统动态变化的相关研究提供基础数据支持,也为该地区森林的可持续管理提供科学依据。
张晓美
光合有效辐射吸收系数(FPAR)是碳循环研究的一个关键生理变量,被认为是表述植被生态系统的基本变量之一。基于30米空间分辨率的LANDSAT反射率数据,得到青藏高原区域的地表植被类型分类结果,根据不同植被类型NDVI值差异,构建遥感反演模型生产各植被类型的生长季FPAR产品。光合有效辐射吸收系数(FPAR)产品可以用来作为参数之一计算植被固碳量,评价植被生态系统状态等,广泛用于生态环境、林业等领域。该数据集投影坐标信息为经纬度WGS84。
彭代亮
联系方式
关注我们

 时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
             | 
 京公网安备11010502040845号
        
数据中心技术支持: 数云软件