归一化植被指数(Normalized Difference Vegetation Index , NDVI)广泛应用于植被监测。本数据集利用2000-2020年青藏高原区域所有可用的Landsat 5/7/8数据(影像10万+),通过MODIS-Landsat数据融合算法(gap filling and Savitzky–Golay filtering;GF-SG),重建了青藏高原植被区域2000-2020年高时空分辨率(30米-8天)NDVI时间序列数据集(QTP-NDVI30)(算法细节请参考论文)。 本数据集具有良好的验证精度。定量评价结果显示重建NDVI影像数据的平均绝对误差MAE为0.02,平均相关系数R为0.96,图像结构相似性SSIM为0.94。选取典型区域与PlanetScope 3米空间分辨率影像比较,空间细节信息得到了较好的保持(产品评价细节请参考论文)。 本数据集地理坐标系为GCS_WGS_84, 空间范围覆盖青藏高原植被区域,植被区域定义为7-9月平均NDVI大于0.15。
曹入尹, 徐子超, 陈洋, 沈妙根, 陈晋
青藏高原及其周边高山地区孕育了高度的植物多样性,其成分来源复杂,既是现代高山植物的分布中心,也与其它地区的植物有着千丝万缕的联系。生长在这一地区的植物具有适应高原环境的独特基因资源,但受限于技术的发展,对这一地区植物的基因资源挖掘和利用仍然处于起步阶段。通过对龙胆科植物卵萼花锚和大花花锚开展比较基因组学研究,可解析植物交配系统进化的基因组效应,发掘与自交相关的关键基因,探讨植物混合交配系统的维持机制。本次数据汇交的内容主要为:卵萼花锚和大花花锚的基因组原始数据,包含卵萼花锚和大花花锚的三代Pacbio测序数据以及卵萼花锚和大花花锚的二代illumina测序数据。
段元文
植被初级生产力(Net Primary Production, NPP)数据集,源数据来自MODIS产品(MOD17A3H),经过数据格式转换、投影、重采样等预处理。现有格式为TIFF格式,投影为Krasovsky_1940_Albers投影,单位为kg C/m2/year,空间范围为整个青藏高原。数据空间分辨率为500米,时间分辨率为每5年,时间范围是2001到2020年。青藏高原NPP整体呈现从西北向东南逐渐增加的趋势。
朱军涛
充分利用多源植被分类/土地覆盖分类产品各自的优势,通过专门设计与青藏高原植被类型相适应的植被分类体系,选用集成分类方法,在数据可靠性的基础上遵循一致性的原则,制作了青藏高原现状植被图,其在现势性、分类体系的针对性和分类精度上均表现更优。从分类结果的现势性来看,青藏高原现状植被图较早期中国植被图能更好地反映青藏高原植被覆盖现状;从分类体系的针对性来看,青藏高原现状植被图采用了针对青藏高原植被专门设计的分类体系,有利于从多源数据产品中充分提取出具备高可靠性和一致性的植被覆盖信息;从分类精度来看,青藏高原现状植被图的总体精度(78.09%,Kappa系数0.75)较已有相关数据产品提高了18.84% ~ 37.17%,特别是对草地、灌丛等植被类型的分类精度有明显提升。
张慧, 赵涔良, 朱文泉
制图范围:张镱锂等2002版青藏高原范围。 数据源:1980年代青藏高原植被图,气候、地形、地貌、土壤数据等。 制图方法:复原植被图是反映未受人类经济活动破坏以前的原始植被分布状况的植被图。由于缺乏青藏高原早期植被分布图,在本项目组编制的1980年代青藏高原植被图的基础上,通过以下方法编制近似复原植被图。采用1980年代青藏高原植被图,使用1980年的WorldClim19个生物气候数据,分析生物气候数据与自然植被的关系,确定各类自然植被分布所对应的气候数据变化范围。对于1980年代植被图中的人工植被,使用最早的1960年的WorldClim19个生物气候数据,根据人工植被分布区的气候数据,以及上面得到的植被分布与气候关系,判断对应的自然植被,将该区人工植被替换为自然植被。在此基础上,进一步考虑植被分布地带性规律及其与地形、地貌、土壤的关系,依据人工植被周边残存的自然植被、周边地带性植被,对前面的判断结果进行分析,交叉验证人工植被替换结果的准确性,并进行适当修正。对于1980年代植被图中的自然植被,如针叶林、阔叶林、灌丛、荒漠、草原、草甸等则保持不变。综合以上分析结果,获得近似复原植被图。植被分类单位与1980年代青藏高原植被图相同。基于制图使用数据精度,本图出图比例尺最大为1:50万。
周继华, 郑元润, 宋长青, 程昌秀, 高培超, 沈石, 叶思菁
1980年代青藏高原植被图制图说明: 制图范围:张镱锂等2021版青藏高原范围。 数据源:1980-1988年Landsat 4-5 TM 影像(空间分辨率约30米)、野外调查数据、1:100万植被图、Google Earth影像、气候、地形、地貌、土壤、土地覆盖数据等。 制图方法:(1)初步图斑分割,采用面向对象的方法初步分割遥感影像,形成初步制图斑块;(2)目视解译,综合野外调查数据、1:100万植被图、Google Earth影像、气候、地形、地貌、土壤、土地覆盖数据等,对初步制图斑块进行目视解译制图;(3)交叉验证,使用地形图、1:100万植被图、土地利用图进行逻辑验证;(4)图例系统,采用《中华人民共和国植被图 (1:1, 000, 000),2007》的分类标准、图例单位和系统,包括植被型组、植被型2个单位,制图区域共有植被型组11个,植被型46个,无植被地段10个;(5)植被图整饰,采用图斑和数字相结合的方法,表示不同植被类型和制图单位;(6)基于制图使用数据精度,本图出图比例尺最大为1:50万。
周继华, 郑元润, 宋长青, 程昌秀, 高培超, 沈石, 叶思菁
本数据集是基于青藏高原多年冻土分布区1114个样点的土壤调查数据,重点考虑了古气候在估算青藏高原土壤碳储量中的重要作用,在综合了气候(古气候和现代气候条件)、植被、土壤(土层厚度和土壤理化属性等)和地形等因素后,通过机器学习算法重新评估得到的青藏高原3m深度土壤碳储量。结果集表明当前陆地生态系统模型普遍低估了青藏高原冻土碳库大小,模型中缺乏对古气候影响的考虑是导致模拟偏差的重要原因。因此,未来模型模拟土壤碳循环应该将古气候的作用考虑在内。
丁金枝
本数据是研究团队采用新方法定量重建获得的末次冰盛期以来青藏高原不同样点的植被变化数据。首先收集、整理青藏高原及其周边17个植被带1802条现代孢粉数据作为训练集,采用随机森林算法建立基于孢粉数据重建青藏高原植被的模型,该模型预测现代孢粉样点的植被时,与实际植被对比,显示出较高的一致性(>76%)。与传统的生物群区化法相比,新建立的随机森林模型基于孢粉数据预测青藏高原现代植被的准确性更高。随后,将新建立的随机森林模型用于青藏高原51条孢粉化石序列的古植被重建。用贝叶斯方法重新建立各孢粉化石序列的深度-年代模型,并用线性插值方法获取500年间隔的孢粉化石数据。最终用随机森林模型重建出青藏高原22000年以来500年间隔的植被时空格局变化。本数据可以为理解过去高寒植被的变化过程和机制提供依据,为研究过去气候变化对青藏高原植被的影响提供证据,为气候模拟提供边界条件。
秦锋, 赵艳, 曹现勇
青藏高原植物群落样方调查数据集(2019)由第二次青藏科考任务三专题六的科考队于2019年8月野外调查完成,空间跨度为:北纬36.02°- 38.07°,东经91.45°- 100.84°。数据集覆盖了森林、灌丛、草地、荒漠和农田等植被类型,共48个样地。数据集由四部分组成,包括样地信息、乔木层样方、灌木层样方和草本层样方。其中乔木层数据2条,灌木层数据63条,草本层数据101条。调查条目包括物种组成,物种分盖度,物种平均高度,灌丛平均冠幅和群落总盖度。
黄永梅, 霍佳璇, 任梁
利用野外调查和文献调研收集到的青海沙蜥(Phrynocephalus vlangalii)分布点,结合五个来自于WorldClim数据库的气候因子,分别将当前(1960-1990年)和未来(2061-2080年)的气候数据输入训练好的物种分布模型,对当前和未来的适宜栖息地进行预测。预测结果表明,在青海沙蜥在气候变化下将会丧失大量原有栖息地,针对青海沙蜥的保护措施应重点关注青藏高原东缘,柴达木盆地北部和东部这些地区。模型也预测在气候变化后,新的适宜栖息地将在原本不适宜青海沙蜥生存的地区出现。然而,由于爬行动物的扩散能力非常有限(文献记录的最大年扩散距离不足500m),新出现的适宜栖息地不一定能被青海沙蜥利用。同时,通过野外工作收集三个海拔种群青海沙蜥的生理、生活史、行为及形态数据并结合微气候数据,利用机制生态位模型预测了气候变化在当前适宜分布区对青海沙蜥造成的生理后果。模型预测的结果表明,无论在SSP245还是SSP585气候变化情景下,青海沙蜥的活动时间在当前适宜分布区的大部分范围(> 93%)内都会增加,热安全阈在当前适宜分布区的所有地点都会减少。高海拔种群的活动时间增幅小于低海拔种群,而其热安全阈减少的幅度却大于低海拔种群。研究结果揭示了气候变化可能对分布在高海拔地区的蜥蜴种群造成更大影响。
曾治高
本数据集是2017年8月-9月于阿里地区采集的典型地物光谱测量数据。高光谱数据使用ASD便携式地物光谱仪FieldSpec 4测量。进行光谱测量时基本为光线稳定的晴天,测量时记录了云量情况。测量前使用白板进行校准;并使用GPS记录经纬度坐标;记录了测量的植被类型;同时测量了周围土壤的光谱数据。地物光谱仪记录的DN值为.asd格式文件,可使用ViewSpecPro软件读取,并利用EXCEL结合白板数据转换为反射率。光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
刘林山, 张炳华
1) 数据内容:该数据是对青藏高原林芝地区立定遗址文化层堆积剖面进行研究产生的古DNA数据,包括4个层位10个堆积物古DNA样本的HiseqX宏基因组预测序数据。可以用来初步分析林芝立定遗址堆积物古DNA记录的物种组成的历时性变化,揭示当地古代农业发展的历程。 2) 数据来源及加工方法:课题组自有数据,利用Pair-end建库测序方法和illumina HiseqX测序平台检测获取。 3) 数据质量:20.3MB数据量,Q30>85%。 4) 数据应用成果及前景:数据用于探索遗址堆积物古DNA在揭示青藏高原古代农业发展历程中的研究潜力。
杨晓燕
本数据包括第二次青藏高原野外综合科学考察的影像资料。影像资料内容包括科考途中自然保护区采集样方的样地照片,云南西北部和四川西部自然保护区的森林生态系统,草地生态系统,湖泊生态系统的影像,植被情况,野生动植物生境,保护区内的动物,植物和真菌类数据。此外,影像数据还包括科考的样品采集过程和社区调查中科考队员入户调查以及与当地保护部门访谈的影像资料。数据来源于无人机和相机拍摄,可为科学研究提供佐证和参考。
苏旭坤
在青海和西藏的荒漠带实地调查了52个样点,于2019年和2020年7-8月植被生长最大时期对植被地上生物量进行实地采样。同时,利用手持 GPS设备,记录了实验位点的经度、纬度和海拔等信息。样方的野外设置方法为:选取一块植被均匀的地段,当植被相对茂盛时样地设置为10米x10米的正方形样地,当植被相对稀疏时样地设置为30米x30米的正方形样地或者30米x90米的长方形样地;在设置好的样地中随机投掷3-5个小样方框(1米x1米),采用样方收割法收集植物样品:在1平方米的样方面积内,登记植物的物种名目,每个物种的株数等信息。并将样方内的各种植物分种齐地面刈割,带回实验室内, 在恒温干燥箱内65℃条件下烘干至恒重, 测定植物样本的干重,计算样方地上生物量。 此外,还通过采样点的经度纬度提取了该52个样点的2种遥感净初级生产力数据。(1) 2000-2018年的增强型植被指数(EVI),并计算年整合增强型植被指数(iEVI),iEVI与净初级生产力(NPP)具有高相关性,可作为净初级生产力的替代指标(He et al. 2021, Science of The Total Environment)。(2) 2001-2020年遥感净初级生产力(NPP)及其质量控制百分比(QC),遥感NPP数据来自MOD17A3HGF Version 6 product (https://lpdaac.usgs.gov/products/mod17a3hgfv006/),由净光合值(总初级生产力-植物维持呼吸)计算得到。植被覆盖度低的样点,遥感净初级生产力可能存在空值(NA)。
叶建圣
本数据为“Major turnover of biotas across the Oligocene/Miocene boundary on the Tibetan Plateau” (中文标题“青藏高原渐新世——中新世界线生物群的重大转换”)论文的全文相关图片数据。 数据来源为论文作者绘制或拍摄的原创图片的高清原图版本。 数据加工方式:原始图片未经二次加工。 数据可作为青藏高原隆升、环境及生物群变化等研究的参考资料。 该论文数据可在征得论文相关作者同意及注明出处的前提下引用。
邓涛
数据包括青藏高原与西北干旱区33个湖泊表层沉积物中植物DNA的原始测序文件。我们使用德国Qiagen公司的PowerMax土壤试剂盒提取DNA,并采用通用植物引物g-h (Taberlet et al., 2007) 对样品中叶绿体trnL (UAA) 内含子区的P6环进行PCR扩增,PCR产物随后送至瑞士Fasteris公司进行第二代高通量双端测序,测序仪器为Illumina NextSeq 550。数据质量分数Q30为81.97。
刘兴起, 贾伟瀚
本数据为青藏高原CHNZ020号网格植物多样性与分布数据,包含此网格中植物的中文名、拉丁名、纬经度、海拔、采集编号、分子材料份数、标本份数、行政区划、小地点、采集人、采集时间及创建者等信息。该数据获取自e科考网站(http://ekk.kib.ac.cn/web/index/#/),并部分完成鉴定。此数据已涵盖本区系中87科129属150种植物名录和具体分布信息。此数据既可用于本区域的区系性质研究,亦可用于探讨本区域植物水平和垂直梯度格局等。
邓涛
本数据集是2020年8月三江源地区典型地物高光谱测量数据。使用大疆M600搭载Cubert S185高光谱成像仪拍摄。包括2020年在三江源区域观测的典型地物高光谱测量数据。高光谱拍摄当天为晴天,飞行前进行了白板校准;并使用差分GPS记录经纬度坐标,用于几何精确校准。无人机高光谱相机记录的dn值,可使用Spectronon Pro软件转换为反射率。高光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
刘林山, 谷昌军, 崔伯豪, 魏博
1)数据内容 包括采样点的观测年份、经纬度、海拔、生态系统类型、不同土层(SOC0-100 (kg Cm-2); 0-100代表土层)、地下生物量含量。 2)数据来源 此部分数据是从文献中获取,具体文献来源参考说明文档。 3)数据质量描述 数据观测覆盖范围广,包含指标全面,展示了不同土层下的土壤有机碳含量,具有较高的完整性和精确性,能满足对青藏高原草地土壤碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原土壤的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
1)数据内容 包括采样点的观测年份、经纬度、生态系统类型、年降雨量、干旱指数、年净初级生产力、地上生物量、地下生物量等数据。 2)数据来源 一部分来源于文献(1980-1995),另一部分来源于实地采样(2005-2006)。 3)数据质量描述 数据观测年份长,时间跨度大,覆盖范围广,包含指标多,具有较高的完整性和精确性,能满足对青藏高原草地植被碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
联系方式
关注我们

时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
|
京公网安备11010502040845号
数据中心技术支持: 数云软件