青藏高原被誉为“亚洲水塔”,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。准确估算青藏高原的径流,揭示径流的变化规律,有利于高原及周边地区的水资源管理和灾害风险规避。青藏高原五大河源区冰川径流分割数据集覆盖时间从1971年到2015年,时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为流域,以多源遥感和实测数据为基础使用耦合了冰川模块的分布式水文模型VIC-CAS模拟获得,使用站点实测数据对模拟结果进行了验证,其所有数据进行了质量控制。
王世金
于2020年9月3日-9月9日在怒江流域上游(即怒江源区那曲流域)采集地下水与地表水,样品采集后立即放入100 ml高密度聚乙烯(HDPE)瓶。18O和D采用液态水同位素分析仪(Picarro L2140-i,USA)进行分析测试,稳定同位素比率用相对于Vienna“标准平均海水”(VSMOW)的千分差来表示。δ18O和δD的分析误差分别为±0.1‰和±1‰。为后续分析那曲流域地下水的水源解析提供基础的数据支撑。
刘亚平, 陈政豪
水源涵养服务是一种重要的生态系统服务,直接影响区域水资源的整体水平,会对区域生态系统、农业、工业、人类消费、水力发电、渔业和娱乐活动产生重要影响,对于维持生态系统稳定以及提高人类福祉具有重要意义。针对水源涵养产品生产,基于水量平衡原理耦合降雨量、蒸散发、太阳辐射、气温、植被类型等数据进行了国家屏障区生态系统水源涵养建模研究。水源涵养服务利用基于水量平衡原理的InVEST 模型进行计算,InVEST模型具有输入数据量少、导出数据量大、对抽象生态系统服务功能进行定量分析等优点,是当前水源涵养服务评估的重要手段。该方法认为水源涵养服务为降水量减去蒸散发量,计算的指标包括年降水量、年蒸散发量。其中降水量数据以气象站点数据为基础,将日气象数据累积到年尺度上,然后利用ArcGIS空间插值方法插值到空间上;蒸散发量的计算是通过Zhang模型实现。将多源数据作为InVEST模型的输入变量基于参数化模型实现对青藏高原2000-2020年1km分辨率的水源涵养服务估算。
王晓峰
该数据集包含青藏高原160个湖泊(面积大于40平方公里)1978-2017年的连续日尺度湖面温度(MOD11A1的日间湖温、MOD11A1的夜间湖温、基于MOD11A1日均湖面温度、基于模型的湖面温度)。数据集生产过程首先改进以能量平衡为基础的半物理湖表水温模型(air2water)以实现冰期与非冰期连续模拟,并以MOD11A1产品提取的全湖平均表面温度作为模型的率定数据。数据集与4个湖泊的实测湖面温度相比相关性大于0.9,均方根误差小于2.5℃。该数据集为认知青藏高原湖泊水热平衡、水生生态系统过程及其对气候变化响应提供数据支撑。
郭立男, 吴艳红, 郑红星, 张兵, 文梦宣
该数据为2020年西藏26个湖泊70个点位浮游植物数据,采样时间为8-9月,采样方式为常规浮游植物采样方式,样品采集1.5升,后经鲁哥氏液固定,静止沉淀后虹吸浓缩后,利用倒置显微镜镜检结果。数据包括硅藻、绿藻、蓝藻、甲藻、裸藻、隐藻、棕鞭藻、黄藻、褐藻和轮藻等10个门类,共计77种/属不同浮游植物的密度数据。该数据为原始数据,未经过处理,单位为个/L。该数据可以用于表征这些湖泊敞水区浮游植物的组成、丰度,也可用于计算这些湖泊中浮游植物群落的多样性。
张民
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
本数据集为未来50年黄河源和祁连山区水量平衡数据集(径流、降水、蒸散发、土壤液态含水量),采用基于地貌的生态水文模型GBEHM模拟获取,数据集变量包含月径流、月降水、月蒸散发、月均5cm土壤液态含水量以及月均50cm土壤液态含水量,数据时间范围为2020-2070年,空间分辨率为1km。模型输入数据包含气象驱动、植被、土壤、土地利用等,气象驱动采用38个CMIP6模型SSP2-4.5情景下的集合平均结果,模拟结果能够较好反映黄河源区与祁连山区水文变量的时空变异特征。数据集可进一步用于黄河源区与祁连山区生态-水文过程相关研究,为“山水林田湖草”系统优化调配提供科学依据。
王泰华, 杨大文
本数据集为过去40年黄河源和祁连山区水量平衡数据集(径流、降水、蒸散发、土壤液态含水量),采用基于地貌的生态水文模型GBEHM模拟获取,数据集变量包含月径流、月降水、月蒸散发、月均5cm土壤液态含水量以及月均50cm土壤液态含水量,数据时间范围为1980-2019年,空间分辨率为1km。模型输入数据包含气象驱动、植被、土壤、土地利用等,模拟结果能够较好反映黄河源区与祁连山区水文变量的时空变异特征。数据集可进一步用于黄河源区与祁连山区生态-水文过程相关研究,为“山水林田湖草”系统优化调配提供科学依据。
王泰华, 杨大文
本数据集包括西藏和青海用水量统计数据,数据来源于《西藏水资源公报》和《青海水资源公报》,统计尺度为市级单元尺度,包括青海省的西宁市、海东市、海北州、海南州、黄南州、果洛州、玉树州和海西州等市级单元,西藏的拉萨、昌都、山南、日喀则、那曲、阿里和林芝等市级单元;变量包括年农田灌溉用水量、林牧渔畜用水量、工业用水量、城镇公共用水量、居民生活用水量、生态环境用水量、总用水量等。该数据集可用于青藏高原水资源管理和生态环境保护等领域。
刘兆飞, 姚治君
本数据包括第二次青藏高原野外综合科学考察的影像资料。影像资料内容包括科考途中自然保护区采集样方的样地照片,云南西北部和四川西部自然保护区的森林生态系统,草地生态系统,湖泊生态系统的影像,植被情况,野生动植物生境,保护区内的动物,植物和真菌类数据。此外,影像数据还包括科考的样品采集过程和社区调查中科考队员入户调查以及与当地保护部门访谈的影像资料。数据来源于无人机和相机拍摄,可为科学研究提供佐证和参考。
苏旭坤
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
湖泊盐度是湖泊水环境的重要参数,是水资源的重要体现,也是气候变化研究的重要组成部分。本数据基于实测获取的青藏高原湖泊盐度数据,其中盐度以实用盐度单位(psu)进行表征,该盐度值使用电导率传感器测量获得的比电导率(SpC)转换得到。使用Arcgis软件将测量数据转化为空间矢量.shp格式,得到实测盐度空间分布数据文件。该数据可作为地区湖泊环境、水文、水生态、水资源等科学研究的基础数据以及相关研究参考。
朱立平
本数据集提供青藏高原124个湖泊实测水质参数,湖泊总面积为24,570 平方千米,占青藏高原湖泊总面积的53% 。实测湖泊水质参数包括水温、盐度、pH、叶绿素a浓度、蓝绿藻(BGA)浓度、浊度、溶解氧(DO)、荧光溶解有机物(fDOM)和水体透明度(SD)。测量方法中,盐度使用电导率是传感器测量获得的比电导率(SpC)转换得到,叶绿素a和蓝绿藻(BGA)浓度使用总藻类荧光传感器测量,温度使用温度传感器测量,pH使用pH传感器测量,溶解氧(DO)使用光学溶解氧传感器测量,fDOM使用荧光传感器测量,单位是硫酸奎宁单位(QSU),浊度使用浊度传感器测量,以Formazin比浊法为单位(FNU)。上述传感器测量获取的参数均使用YSIEXO或HACH多参数水质仪测量,测量时,传感器位于湖面以下约10-20厘米处。湖泊水体透明度使用塞氏盘测量法进行测量。
朱立平
本数据包含了2019年度,在色林错和纳木错周遭地区,共21个湖泊的底栖动物数据,采样主要在沿岸带使用底拖网和深水区使用Ekman采集器,将两种途径获取的材料整合之后,给出了各个湖泊底栖动物数据相对丰度,主要湖泊底栖种类分别为湖沼钩虾、水龟虫和摇蚊幼虫,但是螺类以及介形类出现频率较低,可能与采样点设置有关。该数据进一步将不同类型的底栖划分为21个分类单元,提高了识别精度和认知范围,将为高原湖泊水生动物多样性和渔业资源评估提供参考。
唐红渠
本数据集为青藏高原164个湖泊1978~2017年日尺度湖面温度产品。首先基于MOD11A1产品获取湖面像元均值得到2000~2017年日尺度湖面温度序列。其次改进湖泊水温模型air2water以实现全年湖面温度的逐日连续模拟。进而以气象站逐日气温数据为模型驱动数据,MOD11A1监测的湖面温度为模型率定和验证数据,重建青藏高原1978~2017年日尺度湖面温度序列。与遥感监测结果相比,所有湖泊纳什效率系数高于0.6,偏差分布于±055℃之间。数据集可用于分析青藏高原湖面温度过去几十年的长时序变化,对于评估气候变暖对青藏高原湖泊水热平衡、水质及湖泊生态系统变化具有重要意义。
郭立男, 吴艳红, 郑红星, 张兵, 文梦宣
本数据集包括西藏和青海水资源统计数据,数据来源于《西藏水资源公报》和《青海水资源公报》,统计尺度为市级单元尺度,包括青海省的西宁市、海东市、海北州、海南州、黄南州、果洛州、玉树州和海西州等市级单元,西藏的拉萨、昌都、山南、日喀则、那曲、阿里和林芝等市级单元;变量包括年降水量、地表水资源量、地下水资源量、重复计算量、水资源总量、人均水资源量、产水模数、地表水源供水量、地下水源供水量、总供水量、农业用水量、工业用水量、生活用水量、生态环境用水量及总用水量等。该数据集可用于青藏高原水资源管理和生态环境保护等领域。
刘兆飞, 姚治君
陆地实际蒸散发(ETa)是陆地生态系统的重要组成部分,它连接着水文、能量和碳循环。然而,准确监测和理解青藏高原(TP)实际蒸散发(ETa)的时空变化仍然非常困难。在此,利用MOD16-STM模型,在土壤属性、气象条件和遥感数据集的支持下,对青藏高原多年(2000-2018年)月度ETa进行了估算。估算出的ETa与9个通量塔的测量结果相关性非常好,均方根误差(平均RMSE=13.48 mm/月)和平均偏差(平均MB=2.85 mm/月)较低,相关系数(R=0.88)和一致性指数(IOA=0.92)较高。2000年至2018年,整个TP和东部TP(Lon>90°E)的空间平均ETa显著增加,增速分别为1.34 mm/年(P<0.05)和2.84 mm/年(P<0.05),而西部TP(Lon<90°E)未发现明显趋势。ETa及其组分的空间分布不均匀,从东南向西北TP递减。东部ETa呈显著上升趋势,西南部ETa全年呈显著下降趋势,尤其是冬春两季。土壤蒸发(Es)占总ETa的84%以上,其时间趋势的空间分布与年平均ETa相似。春季和夏季的ETa变化幅度和速率最大。陆表ETa的多年平均年值(面积2444.18×10^3 km2)为376.91±13.13 mm/年,相当于976.52±35.7 km3/年。整个TP(包括所有高原湖泊,面积2539.49×10^3 km2)的年平均蒸发水量约为1028.22±37.8 km3/年。新的ETa数据集有助于研究土地覆被变化对水文的影响,有助于对整个TP的水资源管理。
马耀明, 陈学龙, 袁令
结合MODIS积雪产品Terra/Aqua(500 m)与IMS(4 km),发展了青藏高原每日无云高分辨率积雪产品 (TAI, 500 m)。其相对于原始的MODIS Terra(云覆盖46.6%)和Aqua(55.1%)、及MODIS Terra-Aqua结合(37.3%),将云遮蔽全部去除。同时,提高了积雪成图,新生成的TAI产品的积雪面积为19.1%,相对于原始的MODIS Terra/Aqua及MODIS Terra-Aqua结合(积雪面积4.7%~8.1%),显示了大大的提高。与青藏高原105个站点雪深数据验证表明,TAI产品的总精度为94%,相对于MODIS Terra(55%)、MODIS Aqua(50%)、及MODIS Terra-Aqua结合(64%),都显示了较大的提高,特别是雪深大于4 cm时效果较好。
张国庆
青藏高原是世界上最大的高、低纬度多年冻土带,近几十年来,其多年冻土带迅速退化,其最显著的特征之一就是热融湖塘的形成。这样的湖泊由于能够调节碳循环、水和能量通量而引起了极大的关注。然而,这一地区的热融湖塘的分布在很大程度上仍不为人所知,这阻碍了我们对多年冻土的响应及其碳反馈对气候变化的理解。本数据集基于200余景Sentinel-2A影像,结合ArcGIS、NDWI和Google Earth Engine平台,通过GEE自动提取和人工目视解译的方法提提取青藏高原多年冻土区内热融湖塘边界。在2018年热融湖塘数据集中,青藏高原多年冻土区共有121,758个热融湖塘,面积为0.00035-0.5 km²,总面积为1730 km² 。本次热融湖塘编目数据集为青藏高原水资源评价、多年冻土退化评价、热喀斯特研究提供了基础数据。
陈旭, 牟翠翠, 贾麟, 李志龙, 范成彦, 母梅, 彭小清, 吴晓东
全面估算了1132个大于1 km2湖泊的水量变化。总的来说,1976至2019年间,湖泊水储量增加了169.7±15.1 Gt(3.9±0.4 Gt yr-1),主要发生在内流区(157.6±11.6或3.7±0.3 Gt yr-1)。1976至1995年间,湖泊水量显示减少(-45.2±8.2Gt或-2.4±0.4Gt yr-1),但在1995至2019年间,大幅增加(214.9±12.7Gt或9.0±0.5Gt yr-1)。2010至2015年间,水量增速减缓(23.1±6.5 Gt或4.6±1.3 Gt yr-1),随后在2015至2019年间再次出现高值(65.7±6.7 Gt或16.4±1.7 Gt yr-1)。在1976-2019年间,冰川补给湖水量增加(127.1±14.3 Gt)远远高于非冰川补给湖(42.6±4.9 Gt),这也与冰川补给湖数量多,面积广有关。另外,封闭湖水量增幅(161.9±14.0 Gt)大大高于外流湖(7.8±5.8 Gt)。
张国庆
联系方式
关注我们

时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
|
京公网安备11010502040845号
数据中心技术支持: 数云软件