基于雅鲁藏布江流域内已有的262个雨量筒逐月降水数据、WRF和ERA5降水数据,利用随机森林学习算法重建了雅鲁藏布江流域及7个子流域1951–2020年10km分辨率的逐日降水数据。该数据经过了站点单点验证,在年和季节变化方面表现较好。并且该数据经过了水文模型反向评估,利用该数据驱动VIC水文模型模拟了雅江流域及各子流域径流变化,并利用实测径流、MODIS及冰川编目数据进行验证。该数据在原有第一版基础上考虑了降水空间分配特征,能更好描述高山区降水特征。
孙赫
青藏高原气溶胶光学特性地基观测数据集采用Cimel 318太阳光度计连续观测获得,涉及珠峰站和纳木错站共两个站点。这些产品是经过云检测之后的结果。数据覆盖时间从2021年1月1日到2021年12月31日,时间分辨率为逐日。太阳光度计在可见光至近红外设有8个观测通道,中心波长分别为:340、380、440、500、670、870、940和1120 nm。仪器的视场角为1.2°,太阳跟踪精度为0.1°。根据太阳直接辐射可获得6个波段的气溶胶光学厚度,精度估计为0.01-0.02。最终采用AERONET统一反演算法,获得气溶胶光学厚度、Ångström指数、粒度谱、单次散射反照率、相函数、复折射指数和不对称因子等。
丛志远
青藏高原作为强大的热源,影响到亚洲季风的爆发与进退,西风带和季风带的相互作用。为了研究高原热力作用的变化及其对周边地区气候的影响,需要高原热源相关的基础数据。 本数据集由再分析资料计算得到得青藏高原及其周边地区逐月热源基础数据构成,变量包括青藏高原及周边地区大气热源、潜热通量、感热通量等,其水平范围覆盖为40°E-180°,20°S-80°N。空间分辨率为2.5°x2.5°,主要包括ERA5和NCEP/NCAR两种再分析资料数据。
李清泉
三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
青藏高原地区是除南北极和格陵兰之外中低纬度最大的冰川富集区,固态水体冰川与液态水体湖泊、河流共同组成了亚洲水塔。高原的热力和动力作用及其变率是高原影响亚洲季风与全球大气环流异常的主要驱动力之一。研究青藏高原本身的热力性质以及反馈作用,需要利用气候模式,开展青藏高原与周围地区的百年历史检验和未来百年的预估(温度、降水、辐射等)。 本数据集由青藏高原及其周边地区的格点温度、降水、辐射等数据构成,其水平范围覆盖为40°E-180°,20°S-80°N,时间分辨率包括年、季平均。数据采用第六次国际耦合模式比较计划(CMIP6)中国国家气候中心BCC-CSM2-MR模式试验结果,包括historical,SSP126,SSP245,SSP370,SSP585试验的百年历史模拟与未来预估数据,根据双线性插值方法,统一插值到1°x1°分辨率水平。该数据可以为第二次青藏高原考察时段提供区域气候和水循环变化的基本信息,为外场考察结果提供参考,研究可能的变化机理。
李清泉
水体覆盖是水循环、能量平衡的基本参数之一。本数据集以1982-2020年AVHRR逐日反射率时间序列为基础,生产了青藏高原39年超长期逐日水体制图产品(包含水体结冰信息)。本数据集包含39个文件夹,以年份命名(从1982年到2020年),每个文件夹包含365/366个GeoTiff文件,每个文件包含两个波段:(1)水体制图波段(WaterLayer);(2)质量控制信息波段(QC)。本产品为青藏高原水体遥感监测提供数据支撑。
计璐艳
青藏高原六大外流河(黄河、金沙江、雅砻江、怒江、澜沧江、雅鲁藏布江)平滩流量条件下河流表面SHP矢量数据,以1km为步长的平滩流量下河宽和面积的SHP矢量和XLS表格数据。 基于现场实测水文和大断面数据(1967-2020年),结合洪水频率分析,确定六大水系沿程的平滩流量、日期和河宽;采用MNDWI指数分别从Sentinel-2(2017-2020年)和Landsat5/7/8(1984-2020年)影像中提取平滩流量下河流表面矢量。 该数据库可作为全球水文数据集的补充,为研究青藏高原河床演变、河流生态、水文模拟、河流水-气界面物质交换等提供基础数据。
李丹, 薛源, 覃超, 吴保生, 陈博伟, 汪舸
该数据集为青藏高原主要农作物青稞和小麦的产量历史数据,包括要素为播种面积和产量,涵盖年份包括1988年-2018年,涵盖区域包括青藏高原范围内部分州市及区县。数据来源于《西藏统计年鉴》、《青海统计年鉴》、《四川统计年鉴》、《甘肃统计年鉴》、《云南统计年鉴》及阿坝藏族羌族自治州和甘孜藏族自治州农牧局,精度同数据摘取的统计年鉴。青稞和小麦是青藏高原主要的农作物,该数据集对于研究青藏高原粮食安全、农业生产等方面具有重要价值。
潘志芬
植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关。是反映农作物长势和营养信息的重要参数之一。根据该参数,可以知道不同季节的农作物对氮的需求量, 对合理施用氮肥具有重要的指导作用。植被修正指数Correct NDVI (C-NDVI) 是剔除气候要素(气温、降水等)对NDVI的影响后的NDVI的值。以降水为例,降水对植被生长影响的滞后效应的研究表明,不同地区由于植被组成和土壤类型的差异,降水影响的滞后时间不同。本研究工作主要是对MODIS NDVI数据进行后处理,首先将当月NDVI值与本月的降水量、本月与上月的降水量的平均值、本月与上两个月的降水量的平均值等分别进行相关分析,确定最优的滞后时间。将NDVI与降水和气温做回归分析,得到相关的系数,然后通过MODIS NDVI与气候因子回归的NDVI的差值计算出校正的NDVI值。我们利用气候数据对NDVI进行修正后给出可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被修正指数。数据空间分辨率为0.5度,时间分辨率为月度值。
叶爱中
数据为青藏高原新生代植物大化石数据名录。包括叶片、种子、果。内容包括科属种的拉丁名和中文名、时代、产地、形态描述、讨论、标本和参考文献。物种名参照原始文献。对于有后人修订的化石记录,以修订后的记录为准;产地(化石点)年代以该化石产地的最新文献结果为准。叶形态描述的术语和描述范式以《叶结构手册》为准;描述中涉及的长度、角度等测量数据以原始文献的数据和图片为准。文档的化石记录按科、属拉丁名首字母升序排序。数据可为研究新生代青藏高原环境气候演变与植被和植物多样性演化之间的耦合关系提供重要参考资料。
周浙昆, 刘佳, 陈琳琳, Robert A. Spicer, 李树峰, 黄健, 张世涛, 黄永江, 贾林波, 胡瑾瑾, 苏涛
青藏高原被誉为“亚洲水塔”,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。准确估算青藏高原的径流,揭示径流的变化规律,有利于高原及周边地区的水资源管理和灾害风险规避。青藏高原五大河源区冰川径流分割数据集覆盖时间从1971年到2015年,时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为流域,以多源遥感和实测数据为基础使用耦合了冰川模块的分布式水文模型VIC-CAS模拟获得,使用站点实测数据对模拟结果进行了验证,其所有数据进行了质量控制。
王世金
青藏高原被誉为“亚洲水塔”,是东南亚众多河流的源区,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。青藏高原五大河源区冰川径流数据集覆盖时间从2005年到2010年,时间分辨率为每5年一期,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为1km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态经济学方法结合,量化了江河源区冰冻圈水资源服务的价值,其所有数据进行了质量控制。
王世金
为探究雅鲁藏布江上游干支流的无机水化学特征,于2020 年8 月在雅鲁藏布江上游河源和河流段采集干支流水样。现场用100ml聚乙烯(PE)塑料瓶采集河水并使用多参水质监测仪(YSI-EX02,USA)原位测定采样点的pH值(±0.2)、溶解氧(DO)(±1%)等基本理化参数,并用0.025mol/L的HCl滴定HCO3-浓度。在实验室内采用离子色谱仪(盛瀚CIC-D160型,中国)分析测定Na+、K+、Ca2+、Mg2+、SO42-、NO3-、Cl-离子浓度。采用Gibbs模型、相关性分析、主成分分析等方法,分析了雅江上游干支流主要离子浓度变化、河水水化学组成特征,并对离子来源进行了解析,旨在揭示青藏高原冰川融水径流的无机水化学特征,并为高原地区典型河流的水源解析及变化趋势预估提供基础支撑。
牛凤霞
数据集包含了2020年9月,2021年6月,2021年9月测量得到的3幅廓琼岗日冰川高精度表面地形数据及对应的正射影像图。该数据集的生成使用了大疆精灵4 RTK无人机拍摄的影像数据,经倾斜摄影测量技术计算生成了相关产品,数据空间分辨率达到了0.15米。该数据是对目前低分辨率开源地形数据的补充,能够反映2020年-2021年间廓琼岗日冰川的表面形态变化,有助于精确研究气候变化下廓琼岗日冰川的消融过程。
刘金涛
1)青海省湟水流域典型工业园土壤环境质量数据,为区域工业活动导致的土壤污染管控提供基础支撑; 2)数据来源为湟水流域典型区域土壤样品,样品采集后迅速放入-4℃冰箱保存送尽快至实验室,经前处理后完成相关参数的检测; 3)样品采集、转运过程符合规范,实验检测过程遵照相关标准严格执行结果,因土壤环境各因素的变化,该结果仅针对本次调查结果; 4)该数据可用于对区域土壤污染状况、重金属风险评估等内容进行分析;
王凌青
本数据为青藏高原CHNZ016号网格植物多样性与分布数据,包含此网格中植物的中文名、拉丁名、纬经度、海拔、采集编号、分子材料份数、标本份数、行政区划、小地点、采集人、采集时间及创建者等信息。该数据获取自e科考网站(http://ekk.kib.ac.cn/web/index/#/),并部分完成鉴定。此数据已涵盖本区系中所有植物名录和具体分布信息。此数据既可用于本区域的区系性质研究,亦可用于探讨本区域植物水平和垂直梯度格局等。
邓涛
本数据为青藏高原CHNAC006号网格植物多样性与分布数据,包含此网格中植物的中文名、拉丁名、纬经度、海拔、采集编号、分子材料份数、标本份数、行政区划、小地点、采集人、采集时间及创建者等信息。该数据获取自e科考网站(http://ekk.kib.ac.cn/web/index/#/),并部分完成鉴定。此数据已涵盖本区系中91科200余属600余种植物名录和具体分布信息。此数据既可用于本区域的区系性质研究,亦可用于探讨本区域植物水平和垂直梯度格局等。
邓涛
该数据集包含2016年11月至2020年8月在青藏高原采集的15条冰川共269个冰雪样品微生物扩增子测序数据,包括24K冰川(24K)、冬克玛底冰川(DKMD)、敦德冰川(DD)、杰玛央宗冰川(JMYZ)、廓琼岗日冰川(KQGR)、来古冰川(LG)、帕隆4号冰川(PL4)、羌塘1号冰川(QT)、枪勇冰川(QY)、曲玛冰川(QM)、唐古拉龙匣宰陇巴冰川(TGL)、夏岗江冰川(XGJ)、雅拉冰川(YA)、泽普沟冰川(ZPG)、珠峰东绒布冰川(ZF)。采样区域经纬度范围为28.020°N到38.100°N和86.28°E到95.651°E。 通过聚合酶链式反应(PCR),采用515F/907R(或515F/806R)引物对16s rRNA基因的V4-V5区(或V4区)片段进行扩增,并用Illumina Hiseq2500测序平台测序获得原始数据。所选引物序列分别为:“515F_GTGCCAGCMGCCGCGGTAA; 907R_CCGTCAATTCMTTTRAGTTT”“515F_GTGCCAGCMGCCGCGG, 806R_GGACTACHVGGGTWTCTAAT”。上传的数据包括:样品编号,样品描述,采样时间,经纬度坐标,样品类型,测序目标,测序片段,测序引物,测序平台,数据格式等基础信息,测序数据以序列文件数据格式正向 *.1.fq.gz和反向 *.2.fq.gz压缩文件储存。
刘勇勤
1. 总编号为测量年的统一编号,如:17-001(2017年的第一个测点),野外编号为单次野外编号。 2. 时间:测量时的北京时间,如: 2017/08/01 13:25(2017年8月1日13时25分)。 3. 地理位置:测量点的经纬度,如: 29.6584,101.0884(北纬29.6584°,东经101.0884°),野外由Garmin 63sc型GPS测定。 4. 海拔:测量点的绝对海拔高程,如4500m (海拔4500米),野外由Garmin 63sc型GPS测定,精度为1 m。 5. 实测植被盖度(%):在野外用样方(1000 m*1000 m)测得。 6. 大气压:野外用DPH-103型智能数字温湿度大气压计测得,如651.7kPa,精度:0.1 kPa。 7. 气温:野外用DPH-103型智能数字温湿度大气压计测得,如15.61℃,精度:0.01℃。 8. 相对湿度:野外用DPH-103型智能数字温湿度大气压计测得,如79.1%,精度:0.1%。 9. 相对氧含量:野外用TD400-Sh-O2便携式氧气检测仪测得,如20.16%,精度:0.01%。 其中,17-001至17-065采样点的海拔通过Garmin Oregon 450型GPS测定, 精度为1 m;大气压通过卡西欧prg-130gc型气压计测定, 精度为5 hPa;氧气相对含量利用CY-12C型数字测氧仪测得,0-50.0%量程,分辨率为0.1%,精度为±1%。
史培军
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件