基于青藏工程走廊现有的15个活动层厚度监测场天然孔数据资料,运用GIPL2.0冻土模型模拟了青藏工程走廊的活动层厚度现状分布图。该模型需要合成时间序列的温度数据集,按照时间跨度分为两个阶段,分别是1980-2009和2010-2015,第一阶段的温度数据来自于中国气象驱动数据集(http://dam.itpcas.ac.cn/rs/?q=data#CMFD_0.1),第二阶段的数据应用空间分变率为1km的MODIS地表温度产品(MOD11A1/A2, MYD11A1/A2)。此外,模型需要的土质类型数据来自于分辨率为1公里的中国土壤数据库(V1.1),同时还考虑了地貌,基于实测的土壤热物理参数以及土地覆盖类型等将研究区域归为88类进行了模拟。 对模拟结果和现场实测数据进行了对比,结果显示具有较好的一致性,相关系数达到0.75。在高山地区,活动层平均厚度小于2.0 m,然而在河谷地带,活动层平均厚度大于4.0 m,在高地平原区,活动层厚度通常在3.0 m -4.0 m之间。
牛富俊, 尹国安
地表温度作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气候学、水文学和生态学等的研究中。 在冻土研究中,气候是冻土存在和发展的决定性因素之一,其中地表温度是影响冻土分布的主要气候因子,其影响冻土发生发育以及分布,是冻土建模的上边界条件,对寒区水文过程的研究具有重要的意义。 数据集基于青藏高原工程走廊DEM及观测站资料分析了青藏高原2000-2014地表温度变化趋势。利用MODIS上下午星Terra和Aqua的地表温度数据产品MOD11A1/A2、MYD11A1/A2,基于影像时空信息对云覆盖像元下地表温度信息进行了重建,采用昆仑山(湿地、草原)、北麓河(草原、草甸)、开心岭(草甸、草原)、唐古拉山(草甸、湿地)8个站点对重建信息及地表温度代表性问题进行了分析,通过相关性系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)和平均偏差(MBE)验证指标得出:(1)基于时空信息的MODIS云覆盖像元下地表温度重建精度较高;(2)上下午星Terra和Aqua四次观测加权平均代表性最好。 基于MODIS地表温度信息重建及代表性问题的分析,获取了青藏高原及其工程走廊带2000-2010年年均MODIS地表温度数据。 可以看出2000-2010年地表温度也在经历着波动的增温趋势,这与青藏高原以及青藏工程走廊多年冻土段气候变化保持基本相同的变化趋势。
牛富俊, 尹国安
该数据集是青藏工程走廊多年冻土段三个气象站近50年来的年平均气温和降雨量变化趋势。从记录数据可以看到,年平均气温整体在经历着缓慢的升高过程。五道梁和沱沱河在过去的56年内年平均气温的变化有很好的相关性(r2=0.83)。在1957年,五道梁、沱沱河年平均气温分别为-6.6和-5.1℃,到2012年,两站的气温分别为-4.6和-3.1℃,总的增温大约是2℃左右,年平均增温率为0.03-0.04℃。五道梁和安多在过去的47年内年平均气温的变化也有很好的相关性(r2=0.84)。在1966年,安多年平均气温为-3.0℃,到2012年,气温增加到了-1.8℃,总的增温大约是1.2℃,年平均增温为0.02-0.03℃。年平均气温的增加在五道梁和沱沱河略快于安多。 然而,从降雨量来看,降雨的变化比气温变化更加波动。五道梁和沱沱河在过去56年内年降雨量的变化相关性较差(r2=0.60)。在1957年,五道梁、沱沱河年降雨量分别为302和309mm,到2012年,两站的年降雨量分别为426和332mm,五道梁有124mm的降雨增加,年降雨量增加率约为2mm,沱沱河年降雨量增加率仅为0.4mm。五道梁和安多在过去的47年内年降雨量的变化相关性也较差(r2=0.35)。在1966和2012年,安多年平降雨量分别为354和404mm,总的增加大约是50mm,年平均增加率为1mm。年降雨量的增加在五道梁是最快的。 三个气象站代表了青藏工程走廊多年冻土段的气候变化情况。从整体的气温和降雨量的变化趋势来看,过去50年,走廊北部和中部的气温增速较快,超过全球平均0.02℃/a的水平(IPCC)。北部的降雨量增加也较明显,尤其是五道梁气象站的降雨增速非常明显。气温变暖和降雨增加都对加速多年冻土的空间变化产生较大影响,是导致青藏高原多年冻土退化的主导因素。
牛富俊, 林战举, 尹国安
应用GIPL2.0冻土模型模拟了青藏工程走廊的平均地温分布图。该模型需要合成时间序列的温度数据集,按照时间跨度为2010-2015,数据应用空间分辨率为1km的MODIS地表温度产品(MOD11A1/A2, MYD11A1/A2)。此外,模型需要的土质类型数据来自于分辨率为1公里的中国土壤数据库(V1.1),同时还考虑了地貌,基于实测的土壤热物理参数以及土地覆盖类型等将研究区域归为88类进行了模拟。 对年平均地温模拟结果和现场实测数据进行了对比,结果显示具有较好的一致性。模拟结论得出在高山区域,如昆仑山,唐古拉山,年平均地温小于-2.0 °C;而在较高的河谷地带,如坨坨河的年平均地温高于0 °C;对于高平原地区(如北麓河盆地和五道梁盆地)的年平均地温较高在-2.0 °C ~ 0 °C范围内。如果以年平均地温小于0 °C为多年冻土存在与否的阈值,则青藏工程走廊的多年冻土占整个区域的78.9%。同时根据地温的不同将青藏工程走廊的冻土类型分为低温稳定多年冻土、低温基本稳定多年冻土、高温不稳定多年冻土和高温极不稳定多年冻土。
牛富俊, 尹国安
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件