水是人类赖以生存与发展的物质基础,也是我们感知和应对气候变化的重要媒介。受独特季风气候与阶梯状地形影响,中国水资源分布极不均匀,缺水问题突出,是全球水资源极度脆弱的地区之一。人类活动与气候变化的复合作用,进一步加剧了中国水循环过程研究的复杂性。因此,迫切需要一套质量可靠、时空连续,且剔除大规模人类活动影响下的天然径流数据,为水循环研究提供本底数据支持。然而,中国现有的天然径流资料缺失率较高,参考站点密度不足,在年际和季节变化尺度上存在较大偏差,难以客观揭示大尺度径流变化的自然规律。本研究建立了一套长时序、全覆盖、高质量、时空连续的天然河川径流资料,命名为CNRD v1.0(The China Natural Runoff Dataset version 1.0)。CNRD v1.0提供1961年1月1日至2018年12月31日中国0.25°×0.25°天然径流估算量日值、月值和年值。200个有资料水文站点率定结果显示,模型参数在大多数站点得到了充分校准,模型纳什效率系数(NSE)在率定期和验证期的平均值分别为0.83和0.80。无资料流域交叉验证结果显示,MPR方法提供了最佳的区域化方案,率定期 NSE中位数为0.76,验证期NSE中位数为0.72。结果总体显示水文模型参数率定和区域化表现良好,可用于长时序径流资料重建。另外,通过与两套全球径流格点数据集ISIMIP和GRUN比较,发现CNRD v1.0数据集的径流空间分布上过渡更加连续,且在表示中国复杂地形和气候理分划下的水资源空间分布方面优于全球径流数据集。
缪驰远, 苟娇娇
本数据集来源于论文:(1)He, C., Liu, Z., Tian, J., & Ma, Q., (2014). Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Global change biology, 20(9), 2886-2902.(2)Xu, M., He, C., Liu, Z., Dou, Y. (2016). How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis. PLoS ONE 11(5): e0154839。本数据集的制作流程主要包括:(1)对夜间灯光数据、植被指数数据和地表温度数据进行预处理,得到了1992-2020年覆盖全国范围的多源遥感数据;(2)通过经济分区、选取训练样本、支持向量机分类和年际序列订正,获取城市建成区动态信息。利用Landsat TM/ETM+数据进行精度评价,得到Kappa系数为0.60,总体精度为92.62%。该数据集已用于评估城市扩展过程对自然生境和耕地的影响,能够为理解中国城市扩展过程及其影响提供数据支持。
何春阳, 刘志锋, 许敏, 卢文路
本数据集来源于论文:Huang, M., Wang, Z.C., Pan, X.H., Gong, B.H., Tu, M.Z., & Liu, Z.F. (2022). Delimiting China's urban growth boundaries under localized shared socioeconomic pathways and various urban expansion modes. Earth's Future, 10, e2021EF002572。本套数据集展示了不同社会经济情景和不同扩展模式下中国2021-2100年城市建成区的扩展过程和城市空间增长边界(也可称为城市扩展边界)。本数据集的制作流程主要包括:(1)基于本地化后的共享社会经济路径,利用基于斑块的LUSD-urban模型,模拟了11种扩展模式下的城市扩展过程;(2)基于最大扩展范围,利用空间形态学方法对城市扩展动态信息进行处理,划定了中国各省级行政区的城市空间增长边界。作者利用该套数据分析了不同情景和不同扩展模式下城市扩展过程对生态系统服务的影响以及城市收缩压力,可为合理划定城镇开发边界提供参考。
黄妙, 王梓晨, 潘鑫豪, 龚炳华, 涂梦昭, 刘志锋
中国区域表层7cm土壤湿度月值数据。时间范围包括历史时期1850-2014,未来时期2015-2100(未来时期包含四个不同共享社会经济路径:SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5)。空间分辨率0.25°。 该数据是基于深度学习方法,以ERA5-Land 表层7cm土壤湿度数据为参考,融合降尺度25个CMIP6模式的表层土壤湿度数据。在气候变化背景下,数据可用于干旱和植被相关分析。
冯冬含
山地冰川是中国西部及其周边地区重要的淡水资源。由于冰川融水在流域尺度为生态和社会经济用水提供补给,因此,确定冰川作用(补给)流域是开展冰川水资源供给功能和服务研究的基础。基于Randolph Glacier Inventory 6.0、中国历次冰川编目、中国三级流域边界数据(中国科学院资源与环境科学数据中心提供)和全球流域边界数据HydroBASINS(www.hydrosheds.org),通过将冰川分布数据与流域边界数据进行相交分析,生成了20世纪50年代至21世纪20年代(至今)(1)中国两级冰川作用流域边界、(2)中国冰川作用的国际河流流域边界以及(3)亚洲高山区冰川作用流域边界数据。该数据兼顾了中国和全球常用流域边界,并将二者很好匹配,以期为中国及其周边地区冰川水资源研究提供基础数据。
苏勃
《中国数字山地图》的数据从宏观尺度刻画中国山地空间格局和复杂形态特征,其中包含我国山地分布、山地分类、形态要素与山地面积比例等信息,是山地区划、山地成因分类及资源环境关联分析的基础数据。 山地承载着巨大的自然资源供给、生态服务与调节功能,在我国生态文明建设和社会经济发展中有着重要的地位和作用。前期,中国科学院、水利部成都山地灾害与环境研究所的李爱农研究员等,在中国山地空间范围定量界定、山地起伏度计算尺度分析及地形自适应算法、山地综合制图等研究的基础上,形成了“中国数字山地图”数据集,具体包括: (1)中国山地空间范围数据,(2)中国山地类型数据,(3)山脉数据(山脉走向、等级与山脊形态),(4)山峰数据,(5)山地面积按一级行政区统计表,(6)中国地势等高面数据,(7)山地形成类型分区数据,(8)中国山地分区数据,(9)主要山峰列表。山地空间界定范围与分类的原始DEM空间分辨率约90m,数据边界已套合中高分辨遥感影像做必要的修订,与山地地形晕渲图有良好的空间一致性;山脉走向与山地散列要素的制图综合精度为1∶100万,为定性的辅助数据。该数据集将山地从地貌制图中单独列出,具有更高的空间分辨率和针对性,可为山地环境及山地灾害地带性研究、山区国土空间分析等提供可靠的本底数据,服务于我国面向山区的宏观决策。
南希, 李爱农, 邓伟
我们提供了中国范围内1km高质量的土壤湿度数据集-SMCI1.0(Soil Moisture of China by in situ data, version 1.0),SMCI1.0是包含2000-2020年、日尺度、以10厘米为间隔10层深度(10-100cm)的高时空分辨率土壤湿度。该数据集是以中国气象局提供的1,648个站点观测10层土壤湿度作为基准,使用ERA5_Land时间序列数据、叶面积指数(LAI)、土地覆盖类型(Landtypes)、地形(DEM)和土壤特性(Soil properties)作为协变量,通过机器学习方式获得。我们进行了两组实验以验证SMCI1.0的精度,时间尺度上:ubRMSE为0.041-0.052,R为0.883-0.919;空间尺度上:ubRMSE为0.045-0.051,R为0.866-0.893。 由于SMCI1.0是基于实地观测的土壤湿度,它可以作为现有基于模型和卫星数据集的有效补充。该数据产品可用于各种水文、气象、生态分析和建模,尤其在需要高质量、高分辨率土壤湿度的应用上至关重要。有关数据集的引用及详细描述,请阅读说明文档。为便于使用,我们提供了两种不同分辨率的版本:30 秒(~1km)和0.1度(~9km)。
上官微, 李清亮, 石高松
中国区域PML-V2水碳耦合的陆地蒸散发与总初级生产力数据集,即PML-V2(China),包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为TIFF,时空分辨率为1天、500米,时间跨度为2000.02.26-2020.12.31。 与全球版本相比,PML-V2(China)产品在中国区域的模拟精度有很大的提升,且具有以下改进和创新: i. 相较于全球版本的八天分辨率,新产品的时间分辨率升至每日; ii. 观测数据来自中国26个涡动通量站,其下垫面包括植被稀疏的荒漠在内的9种植被功能型,并用于模型的参数校准(用于率定全球版产品的中国站点仅有8个,只覆盖5种植被类型); iii. 2000-2018年使用0.1°的中国区域气象要素驱动数据,2019-2020年使用偏差校正的全球陆面数据同化系统GLDAS-2.1气象数据,这些气象输入数据用来替换原先0.25°的GLDAS输入; iv. 使用ERA5陆地的地表温度取代空气温度作为输入,用于计算输出长波辐射; v. 将改进的Whittaker滤波的MODIS叶面积指数作为模型输入,新产品在监测作物耗水量和揭示种植制度特征方面提供了新的见解。 注:本数据集不包含中国南海部分。
张永强, 何韶阳
土壤是人类生存和发展的基础,多个联合国可持续发展目标(SDGs)与土壤资源利用和管理直接相关。然而,全球和我国现有土壤信息大多源于历史土壤调查,较为粗略、陈旧,不能满足应对粮食安全、水资源紧缺、土地退化和气候变化等全球和区域性问题的需要。中国疆域辽阔,土壤景观复杂多样,人为活动强烈,建立高精度土壤信息网格在科学上和应用上均有重要意义。基于近年“我国土系调查与《中国土系志》编制项目”获得的5000多个代表性土壤剖面样点,采用预测性土壤制图范式,利用地理信息与遥感技术对成土环境条件进行精细刻画和空间分析,研发自适应深度函数拟合方法,集成先进的集合式机器学习方法,在高性能并行计算环境下生成了我国系列土壤属性(土壤有机碳、PH值、全氮、全磷、全钾、阳离子交换量、砾石含量(>2mm),砂粒、粉粒、粘粒、土壤质地类型、容重、土体厚度等)高分辨率三维栅格分布图,并估算了不确定性的空间分布。与现有土壤图和相关土壤数据集相比,本研究结果大幅提高了现有制图的准确性和精细度,并提供了空间预测的不确定性信息,更好地表征了我国土壤属性的空间变异特征。该工作初步构建了我国第1版高分辨率国家土壤信息网格,也是对全球数字土壤制图计划(GlobalSoilMap.net)的重要贡献,预期在土壤资源、农业、水文、生态、气候、环境等领域有广泛的应用前景,如土壤监测与管理、土壤功能评价、陆面过程模拟和法庭土壤物证溯源等。
刘峰, 张甘霖
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。
宋沛林, 张永强
该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1°。此外,还包括在气候驱动下(无人类干扰)的以上11个生态系统参量在2001~2018年间的时空变化。因此,该数据集可以反映气候变化与人类活动对21世纪中国陆地生产系统的影响。
陈永喆, 冯晓明, 田汉勤, 武旭同, 高镇, 冯宇, 朴世龙, 吕楠, 潘乃青, 傅伯杰
数据集包含2002年至2018年中国陆地土壤水分数据,单位为m³/m³,时间分辨率为月,空间分辨率为0.05°。它由3个被动微波遥感产品制成:日本宇宙航空研究开发机构(JAXA)的 AMSR-E 的 Level 3 土壤水分数据和 AMSR2 的 Level 3 土壤水分数据,以及由法国农业科学研究院(INRA)和法国空间生物圈研究中心(CESBIO)研发的 SMOS 产品的土壤水分数据。为了应对被动微波土壤水分产品空间分辨率低的不足,研究人员基于温度植被干旱指数(TVDI)建立了空间权重分解(SWD)模型,其中,TVDI由中分辨率成像光谱仪(MODIS)的地表温度(LST)MYD11C3数据和归一化植被指数(NDVI)MYD13C2数据计算而来。整体而言,降尺度的土壤水分产品与实地测量结果一致(R >0.78),且均方根误差较低(ubRMSE < 0.05 m³/m³),这表明数据在整个时间序列中具有良好的准确性。数据集可以广泛应用于水文及干旱监测,并且可以作为生态和其他地球物理模型的重要输入参数。
毛克彪
透明度,作为一种最直观地反映水质特性的指标之一,能够综合地反映水体生态系统的营养状态。光学遥感技术为监测大范围湖泊(包括水库)透明度变化提供了可能。中国湖泊(>1公顷)透明度的年均值数据集覆盖时间从1990到2018年,时间分辨率为5年一期,空间分辨率为30米,使用的数据源为GEE平台的Landsat 长时间序列天顶角反射率产品数据。中国的青藏高原、蒙新高原和东北湖区的影像选择时间主要集中在每年5-10月的非冰期。研究团队利用3种实测透明度数据集进行中国湖泊透明度反演模型的构建与验证。第一种数据集是本研究团队在2004-2018年获取的野外实测数据,该数据集的3/4(976)用来建立模型(红/蓝波段比算法),精度为R2=0.79, rRMSE=61.9%;剩余的1/4(325)用来验证模型,精度为R2=0.80, rRMSE = 57.6%。另外两种数据集是用来验证透明度反演模型的时间迁移性,其中一种数据集是2007-2009年期间由中科院南京地理与湖泊研究所进行湖泊调查获取的实测数据(340),精度为R2=0.78,rRMSE = 59.1%;另一种数据集是1980s-1990s期间第一次湖泊调查结果(229),精度为R2=0.81,rRMSE = 50.6%。模型验证结果表明,透明度反演结果在时空上具有较好的精度和稳定性。最后,基于透明度反演模型,在GEE云平台上编写去云算法、水体指数算法等来实现中国湖泊透明度的反演。该数据集信息有助于决策者或者环境管理者更好改善和保护水质,维持区域的可持续发展。
陶慧, 宋开山, 刘阁, 王强, 温志丹
本数据集包括2013年全国盐田分布数据。这些数据通过Landsat卫星遥感影像人工解译提取盐湖图斑,矢量化处理后形成。主要包含盐田名称(YT)、盐性编号(YXBH)、所在省份(SF)等信息。数据集共有39条记录,56.00KB。数据集文件名及数据表标志名对应如下:盐田名称 YT、盐性编号 YXBH、所在省份 SF。采用WGS-84坐标系为空间基准,精度为1:30万,粒度以县级行政区为最小单元,以省级行政区为最大单元。
陈亮, 王建萍
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
本数据集为欧亚大陆温性草地类型时空变异图-中国区域三级分类图(1980S)。数据为tif栅格格式,空间分辨率为1公里,温性草地三级分类取值1-8分别为:1-温性草甸草原;2-温性典型草原;3-温性荒漠化草原;4-温性草原化荒漠;5-温性荒漠及三个非温性草地类型(6-高寒草地、7-其他植被区、8-非植被区)。 该数据以中国科学院植物研究所为主持单位的《中华人民共和国植被图(1 ∶1 000 000)》数据集为基础,结合历史气象等辅助资料分析处理而成,中华人民共和国植被图包含我国1980年代我国植被类型11 个植被型组、55 个植被型、960 个植被群系和亚群等植被信息,我们选择1980-1989历史气象数据,结合卫星数据进一步分析修正,并进行空间插值计算,得出我国温性草地三级分类。该数据可用于欧亚大陆温性草地分布信息以及时空变异分析提供依据。
唐家奎
数据来源于联合国粮农组织(FAO)和维也纳国际应用系统研究所(IIASA)所构建的世界土壤数据库(Harmonized World Soil Database version 1.1 )(HWSD). 中国境内数据源为第二次全国土地调查南京土壤所所提供的1:100万土壤数据。 该数据可为建模者提供模型输入参数,农业角度可用来研究生态农业分区,粮食安全和气候变化等。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。 土壤属性表主要字段包括: SU_SYM90(FAO90土壤分类系统中土壤名称); SU_SYM85(FAO85分类); T_TEXTURE(顶层土壤质地); DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_GRAVEL: Real (碎石体积百分比); T_SAND: Real (沙含量); T_SILT: Real (淤泥含量); T_CLAY: Real (粘土含量); T_USDA_TEX: Real (USDA土壤质地分类); T_REF_BULK: Real (土壤容重); T_OC: Real (有机碳含量); T_PH_H2O: Real (酸碱度) T_CEC_CLAY: Real (粘性层土壤的阳离子交换能力); T_CEC_SOIL: Real (土壤的阳离子交换能力) T_BS: Real (基本饱和度); T_TEB: Real (交换性盐基); T_CACO3: Real (碳酸盐或石灰含量) T_CASO4: Real (硫酸盐含量); T_ESP: Real (可交换钠盐); T_ECE: Real (电导率)。 其中以T_开头属性字段表示上层土壤属性(0-30cm),以S_开头属性字段表示下层土壤属性(30-100cm)。 具体属性值代表何意义请参考文件夹下说明文档*.pdf及数据库*.mdb。
Food and Agriculture Organization of the United Nations(FAO), aa
结合Landsat影像(4215景)、地形图,利用半自动水体提取及人工目视检查编辑,完成了过去60多年来(1960s, 1970s, 1990, 1995, 2000, 2005, 2010, 2015, 2020)详细的中国湖泊(大于1平方公里)数量与面积变化研究。从1960s到2020年,中国湖泊总数量(≥ 1 km^2)从2127个增加到2621个,面积从68537 km^2扩张到82302 km^2 。
张国庆
数据集包括以下土壤理化性质:pH值、有机质含量、阳离子交换量、根系丰度、总氮(N)、总磷(P)、总钾(K)、碱解氮、速效磷、速效钾、可交换H+、Al3+、Ca2+、Mg2+、K+、Na+、土层厚度、土壤剖面深度、砂、淤泥和C。铺设部分、岩石碎片、体积密度、孔隙、结构、稠度和土壤颜色。提供了质量控制信息(QC)。 分辨率为30弧秒(赤道处约1公里)。土壤性质的垂直变化由8层记录,深度为2.3 m(即0-0.045-0.091、0.091-0.166、0.166-0.289、0.289-0.493、0.493-0.829、0.829-1.383和1.383-2.296 m),以便于在普通土地模型和社区土地模型(CLM)中使用。 数据采用NetCDF格式存储,数据文件名称及其说明如下: 1.THSCH.nc: Saturated water content of FCH 2.PSI_S.nc: Saturated capillary potential of FCH 3.LAMBDA.nc: Pore size distribution index of FCH 4.K_SCH.nc: Saturate hydraulic conductivity of FCH 5.THR.nc: Residual moisture content of FGM 6.THSGM.nc: Saturated water content of FGM 7.ALPHA.nc: The inverse of the air-entry value of FGM 8.N.nc: The shape parameter of FGM 9.L.nc: The pore-connectivity parameter of FGM 10.K_SVG.nc: Saturated hydraulic conductivity of FGM 11.TH33.nc: Water content at -33 kPa of suction pressure, or field capacity 12.TH1500.nc: Water content at -1500 kPa of suction pressure, or permanent wilting point
戴永久, 上官微
DEM是数字高程模型的英文简称(Digital Elevation Model)是流域地形、地物识别的重要原始资料。DEM 的原理是将流域划分为m 行n列的四边形(CELL),计算每个四边形的平均高程,然后以二维矩阵的方式存储高程。由于DEM 数据能够反映一定分辨率的局部地形特征,因此通过DEM 可提取大量的地表形态信息,这些信息包含流域网格单元的坡度、坡向以及单元格之间的关系等。同时根据一定的算法可以确定地表水流路径、河流网络和流域的边界。因此从DEM 提取流域特征,一个良好的流域结构模式是设计算法的前提和关键。 高程数据图是根据中国1:25万等高线和高程点形成的1km数据,包括DEM、山影(hillshade)、坡度(Slope)、坡向(Aspect)图 数据集投影: 两种投影方式 : 正轴割圆锥等面积投影 Albers Conical Equal Area(105、25、47) 大地坐标WGS84坐标系
汤国安
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件