不同相态降水(降雪、雨夹雪和降雨)对地表水循环和能量收支产生不同性质影响。因此,对不同相态降水进行区分至关重要,特别是在气候变化背景下。基于Ding et al.(2014)提出的不同相态降水分离参数化方案和基于观测的逐日格点数据集(CN05.1),以湿球温度、相对湿度、地表气压和高程数据作为输入,我们生成了一套1961-2016年期间中国区域不同相态降水(降雪、雨夹雪和降雨)及其湿球温度阈值的逐日格点数据集,空间分辨率为0.25°。在此基础上,进一步计算了逐年降雪、雨夹雪和降雨总量。该数据可为冰冻圈科学、水文学、生态学和气候变化相关研究提供基础数据。
苏勃, 赵宏宇
数据集为中国多情景多模式逐月平均气温数据,空间分辨率为0.0083333°(约1km),时间为2021年1月-2100年12月。数据为NETCDF格式。数据是根据IPCC耦合模式比较计划第六阶段(CMIP6)发布的全球>100 km气候模式数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成。数据采用IPCC最新发布的SSP情景(SSP119、SSP245、SSP585),每个情景包含三个GCMs(EC-Earth3、GFDL-ESM4、MRI-ESM2-0)气候数据,数据集包含的地理空间范围是中国主要陆地,不含南海岛礁等区域。单位为0.1℃。文件命名是GCM_SSP_tmp-30s-序号.nc,30s即0.0083333°,序号从1-40,序号1表示2021.1-2022.12,依次表示年份;以EC-Earth3_ssp119_tmp-30s-1.nc文件为例,表示SSP119情景下EC-Earth3气候模的1km分辨率2021.1-2022.12逐月均温数据,含24个图层。欲更深入的理解数据请参阅文献引用方式下的数据作者已发表的论文。
彭守璋
数据集为中国多情景多模式逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为2021年1月-2100年12月。数据为NETCDF格式。数据是根据IPCC耦合模式比较计划第六阶段(CMIP6)发布的全球>100 km气候模式数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成。数据采用IPCC最新发布的SSP情景(SSP119、SSP245、SSP585),每个情景包含三个GCMs(EC-Earth3、GFDL-ESM4、MRI-ESM2-0)的气候数据,数据集包含的地理空间范围是中国主要陆地,不含南海岛礁等区域。单位为0.1mm。文件命名是GCM_SSP_pre-30s-序号.nc,30s即0.0083333°,序号从1-40,序号1表示2021.1-2022.12,依次表示年份;以EC-Earth3_ssp119_pre-30s-1.nc文件为例,表示SSP119情景下EC-Earth3气候模式的1km分辨率2021.1-2022.12逐月降水数据。欲更深入的理解数据请参阅文献引用方式下的数据作者已发表的论文。
彭守璋
近地表气温是反映气候变化的重要物理参数。为了获得中国地区高时空分辨率的日数据(Tmax、Tmin和Tavg),我们充分分析了各种现有数据(再分析数据、遥感数据和原位数据)的优缺点。针对不同的天气条件建立了不同的Ta重建模型,并通过建立不同区域的修正方程进一步提高数据精度。最后,获得了1979 - 2018年中国逐日气温数据集(Tmax、Tmin和Tavg),空间分辨率为0.1°。 对于Tmax,使用原位数据的验证表明,均方根误差(RMSE)范围为0.86°C至1.78°C,平均绝对误差(MAE)范围为0.63°C至1.40°C,皮尔逊系数(R2)范围为0.96至0.99。Tmin的RMSE为0.78°C ~ 2.09°C, MAE为0.58°C ~ 1.61°C, R2为0.95 ~ 0.99。对于Tavg, RMSE范围为0.35°C ~ 1.00°C, MAE范围为0.27°C ~ 0.68°C, R2范围为0.99 ~ 1.00。此外,利用多种评价指标分析Ta的时空变化趋势,Tavg增加幅度大于0.0°C/a,与全球变暖的总体趋势一致。 综上所述,该数据集具有较高的空间分辨率和可靠的精度,弥补了之前在高空间分辨率下缺失的温度值(Tmax、Tmin和Tavg)。该数据集也为研究气候变化,特别是高温干旱和低温冷害提供了关键参数。
方舒, 毛克彪
数据集为中国逐月潜在蒸散发,空间分辨率为0.0083333°(约1km),时间为1990.1-2020.12(将每年更新),单位为0.1mm。该数据集是基于中国1km逐月均温、最低温、最高温数据集(本站已发布,Peng at al. 2019),采用Hargreaves潜在蒸散发计算式得到(Peng at al. 2017)。公式如下: PET = 0.0023 × S0 ×(MaxT − MinT)0.5 ×(MeanT + 17.8), 其中,PET为潜在蒸散发,mm/月;MaxT、MinT、MeanT分别为月最高温、最低温、均温;S0为到达地球大气层顶的理论太阳辐射,根据太阳常数、日地距离、儒略日、赤纬等计算得到。 为便于存储,数据均为int16型存于nc(NETCDF)文件中。nc数据可用ArcMAP软件打开制图,并可用Matlab、R软件提取处理。
彭守璋
本数据集包含了中国第三极地区(西藏、新疆、云南、青海)的2019年二氧化硫、氮氧化物、PM2.5排放网格化清单。排放清单来源于清华大学王书肖教授课题组排放清单数据库,通过使用ArcGIS软件技术将排放清单处理为1km*1km的网格数据集。排放计算的基础数据基于公开数据搜集、卫星观测数据、文献搜集等方式,以排放因子法进行计算,数据来自于国家统计局数据及其它行业统计年鉴。该数据可用于模型工作者对于第三极区域气候及空气质量的进一步研究。
吴清茹
该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1°。此外,还包括在气候驱动下(无人类干扰)的以上11个生态系统参量在2001~2018年间的时空变化。因此,该数据集可以反映气候变化与人类活动对21世纪中国陆地生产系统的影响。
陈永喆, 冯晓明, 田汉勤, 武旭同, 高镇, 冯宇, 朴世龙, 吕楠, 潘乃青, 傅伯杰
本数据集是一个包含34年(1983.7-2017.6)的全国高分辨率地表太阳辐射数据集,其分辨率为10公里,数据单位为W/㎡。该数据集是基于以ISCCP-HXG云产品为主要输入的全球高分辨率(3小时,10公里)地表太阳辐射数据集(1983-2017)上,通过地理加权回归方式,融合全国2261个气象台站日照时数反演的地表太阳辐射站点数据而生成的全国地表太阳辐射分布数据。验证并和其他全球卫星辐射产品比较表明,该数据集在长期趋势模拟上比GEWEX-SRB、CMSAF-CLARA-A2、ISCCP-HXG卫星辐射产品的精度要高。本数据可为陆地表面过程模拟的水文生态学的长期变化应用和研究中提供有利的数据支持。
冯飞, 王开存
对未来气候变化的有效评价,特别是对未来降水量的预测,是制定适应战略的重要依据。本数据是基于RegCM4.6模型,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP2.6、RCP4.5、RCP6.0和RCP8.5)、HadGEM2-ES(RCP2.6、RCP4.5和RCP8.5)、IPSL-CM5A-LR(RCP2.6、RCP4.5、RCP6.0和RCP8.5)、MIROC5(RCP2.6、RCP4.5、RCP6.0和RCP8.5)和NorESM1-M(RCP2.6、RCP4.5、RCP6.0和RCP8.5)等多模型不同碳排放浓度情景下进行区域动力降尺度,获得2007-2099年空间分辨率为0.25度,时间分辨率分别为3小时(部分为6小时)、逐日和逐年的21套中国全境未来气候数据。
潘小多, 张磊
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2020.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位分别为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。
彭守璋
该数据为中国逐月最低温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2020.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。
彭守璋
该数据为中国逐月最高温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2020.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。
彭守璋
包含生物质燃烧源污染物SO2、NOX、VOCs、NH3、OC、EC、CO2、CH4的排放及Hg的排放,可为了解第三极区域的排放状况提供数据依据,也可为模型模拟提供输入数据。基础数据基于公开数据搜集、卫星观测数据、文献搜集等方式,以排放因子等方法结合ARCGIS等处理软件,建立了3km*3km的生物质燃烧源排放清单。清单中的数据来自于世界粮食和农作物组织数据库,MODIS卫星数据和科学文献,其质量可以保证。该数据可用于模型工作者对于第三极区域气候及空气质量的进一步研究。
王书肖, 冯新斌
该数据为中国逐月平均温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2020.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。
彭守璋
本数据集为基于蒸散发互补方法建立的中国地表蒸散发产品(v1.5),输入数据包括CMFD向下短波辐射、向下长波辐射、气温、气压,以及GLASS地表发射率和反照率、ERA5-land地表温度和空气湿度、NCEP散射辐射率等。本数据集时间跨度为1982年-2017年,空间范围为中国陆地区域。本数据集可为研究长时间尺度水循环和气候变化提供基础。 陆地实际蒸散发 (Ea),单位: mm month-1。 时间分辨率为逐月; 空间分辨率为0.1°; 数据类型:NetCDF; 本数据仅为陆地实际蒸散发,不含水面。
马宁, Jozsef Szilagyi, 张寅生, 刘文彬
中国区域地面气象要素驱动数据集,包括近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率共7个要素。数据为NETCDF格式,时间分辨率为3小时,水平空间分辨率为0.1°。可为中国区陆面过程模拟提供驱动数据。 该数据集是以国际上现有的Princeton再分析资料、GLDAS资料、GEWEX-SRB辐射资料,以及TRMM降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。详细过程请参阅参考文献。原始资料来自于气象局观测数据、再分析资料和卫星遥感数据。已去除非物理范围的值,采用ANU-Spline统计插值。精度介于气象局观测数据和卫星遥感数据之间,好于国际上已有再分析数据的精度。
阳坤, 何杰
该数据集共包含717个文件,其中station.txt文件主要描述716个站的站点信息,每列分别对应为:经度、纬度和高程;另外以站号命名的716个文件对应716个站的数据,文件中每列分别为:年、月、日和日平均太阳辐射。 该数据是基于中国气象局常规气象观测要素:温度、湿度、气压和日照时数等估算得到的。估算方法采用两个模型得到,分别为:人工神经网络模型和Yang混合模型。Yang混合模型在晴天情况下考虑了气溶胶散射和吸收、瑞利散射、水汽吸收、臭氧吸收和均一混合气体吸收五中衰减过程,云天情况下通过日照时数来参数化云对辐射的影响;而人工神经网络模型利用ANN模型在每个辐射站上建立了辐射和地面常规气象变量的关系。由于人工神经网络模型精度要比Yang混合模型估算精度高,因此通过人工神经网络模型估算值在月尺度上动态校正Yang混合模型估算值最终得到数据集合。
唐文君
该数据集包含2007-2014年地表太阳辐射数据,时间分辨率为逐小时,空间分辨率为5km。每个小时对应一个文件,文件命名方式为: RAD_yyyymmddhh.dat,其中yyyy表示年,mm表示月,dd表示日,hh表示小时(世界时)。经度(X轴)格点:70.025:0.05:140.025,纬度(Y轴)格点:59.975:-0.05:14.975。文件为二进制文件,格式为float格式(real*4),没有头文件。 该数据集的获取分为三步:(1)融合极轨卫星MODIS 和日本静止气象卫星MTSAT 资料,发展适合MTSAT的云检测算法及MTSAT云属性信息(有效粒子半径和路径含水量)的估算方法;(2)发展以云属性、气溶胶、水汽和臭氧等信息为输入的宽波段辐射模型,形成高效快速的地表太阳辐射反演技术;(3)将获取的高分辨率云参数信息和其他要素(气溶胶、水汽、臭氧等)输入宽波段辐射传输模型,最终得到中国高时空地表太阳辐射数据集。 经验证,瞬时辐射均方根误差(RMSE)一般小于 100 W/㎡,日平均辐射均方根误差(RMSE)一般小于 35 W/㎡。
唐文君
该数据集共包含717个文件,其中station.txt文件主要描述716个站的站点信息,每列分别对应为:经度、纬度和高程;另外以站号命名的716个文件对应716个站的数据,文件中每列分别为:年、月、日和日平均光合有效辐射。 该数据是基于中国气象局常规气象观测要素:温度、湿度、气压和日照时数等估算得到的。(1)算法和模型介绍:该模型发展了光合有效辐射(PAR)波段大气宽波段透过率参数化方案,在晴天情况下考虑了四种衰减过程,分别是:气溶胶的吸收和散射,水汽的吸收,臭氧的吸收和瑞利散射。在此基础上建立了晴空条件下地表PAR估算方案,同时利用日照时数作为衡量云对辐射影响的指标,参数化其对地表PAR的影响,进而估算全天空条件下地表PAR。经验证,估算结果数据集的均方根误差小于14W/m² 。
唐文君
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件