植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
项目基于Landsat_TM30m遥感数据通过人工解译和机器学习算法完成了1990-2015年祁连山地区森林、农田、草地、湿地、聚落城市、荒漠六大类生态系统的空间格局分布信息提取,该套数据可以服务于研究区域生态系统宏观格局演变规律,生态系统服务功能评估,重大生态修复工程规划与效果评估。生态系统宏观格局演变是气候-社会经济耦合驱动的自然过程演变的宏观反应,也是土地利用与土地覆被变化的直接反映,更是区域可持续发展成效评估的重要数据基础。研究可为祁连山地区绿色发展指数评估提供数据基础。
吴锋
植被的净初级生产力(Net Primary Productivity,NPP)指绿色植物在单位时间、单位面积上由光合作用产生的有机物质总量(即总初级生产力,Gross Primary Productivity,GPP)中扣除自养呼吸后的剩余部分,NPP作为陆地生态系统的水循环、养分循环和生物多样性变化的基础,是估算地球支持能力和评价陆地生态系统可持续发展的重要生态指标。本数据集包括祁连山区域2021年月度合成30m NPP产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。
吴俊君, 李艺, 仲波
叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。本数据集包括祁连山区域2021年月度合成30m LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。
吴俊君, 李艺, 仲波
归一化植被指数(Normalized Difference Vegetation Index,NDVI)是近红外波段的反射率值与红光波段的反射率值之差比上近红外波段的反射率值与红光波段的反射率值之和。植被指数合成是指在适当合成周期内选出植被指数最佳代表,合成一幅空间分辨率、大气状况、云状况、观测几何、几何精度等影响最小化的植被指数栅格图像。本数据集包括祁连山区域2021年月度合成30m植被指数产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。
吴俊君, 李艺, 仲波
该数据集产品包含1990-2020年每5年1期的青藏高原地上生物量和植被覆盖度数据产品,即1990年、1995年、2000年、2005年、2010年、2015年和2020年共7期。青藏高原地上生物量是根据不同的土地覆被类型,分别建立草地、森林等的地上生物量反演模型形成的地上生物量遥感反演产品;青藏高原植被覆盖度是采用像元二分法模型形成的植被覆盖度遥感反演产品。其中2000-2020年5期青藏高原地上生物量和植被覆盖度是基于MODIS卫星遥感数据进行遥感反演,空间分辨率为250米;1990和1995年2期青藏高原地上生物量和植被覆盖度是基于NOAA AVHRR卫星遥感数据进行遥感反演,经重采样后空间分辨率为250米。该数据集可为揭示青藏高原土地覆被量与质的时空格局,支持生态系统、生态资产与生态安全评估提供基础数据。
吴炳方
归一化植被指数(Normalized Difference Vegetation Index, NDVI)数据集源数据来自MODIS产品,经过数据格式转换、投影、重采样等预处理流程。现有格式为TIFF格式,投影为Krasovsky_1940_Albers投影。数据空间分辨率为1000米,时间上,从2001-2020年,每年提供一幅图像。NDVI产品有红光和近红外两个波段反射率计算得到,能够用于检测植被生长状态、植被覆盖度等。-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大。
朱军涛
植被覆盖度(Fractional Vegetation Coverage,FVC)定义为植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例,是衡量地表植被状况的一个重要指标。本数据集植被覆盖度作为反应植被覆盖状况的评价指标,0%表示地表像元内没有植被即裸地,值越高表明区域内植被覆盖越大。本数据集包括祁连山区域2021年月度合成30m地表植被覆盖度产品。采用最大值合成(Max value composition, MVC)方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。
吴俊君, 李艺, 仲波
本数据集提供了基于遥感估算凋萎系数优化后的全球土壤质地数据,空间分辨率为0.25度。数据集采用了SCE-UA的优化方法,以基于SMAP遥感土壤水分估算的凋萎系数为优化目标,对两套常用的土壤质地数据集GSDE(Shangguan et al. 2014)和HWSD(Fischer et al., 2008)进行了优化。与站点观测的结果表明(北美地区44个站点),在陆面模式中使用优化后土壤质地数据集的土壤水分和蒸散比模拟准确度有较为明显的提升。
何晴, 卢麾, 周建宏, 阳坤, 施建成
该数据为雅鲁藏布江年楚河沿程DEM和正射影像数据,采用DJI无人机搭载的照相机,按照设定的飞行路线对年楚河采样河段进行拍摄照片。相邻照片重叠度不低于70%,将拍摄的照片利用Agisoft Metashape软件生成正射影像和DEM,正射影像包含红绿蓝三个波段。年楚河沿程共包含年楚河流域4个干流和2个支流采样河段。数字高程模型分辨率为<1.0m,坐标系为WGC1984坐标系。该数据集可以为年楚河流域洪水灾害的精确模拟提供数据支撑,进一步服务于洪水灾害的防治与风险评价,具有重要科学与社会价值。
马旭东, 黄尔, 闫旭峰, 罗铭, 王路
本数据集包括祁连山地区重点区域2021年5月至2021年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为8m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 王宏伟, 周圣明, 曹永攀
本数据集包括黑河流域2021年5月至2021年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为8m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 王宏伟, 周圣明, 曹永攀
雅鲁藏布江流域内巨量固体碎屑物质是记录青藏高原隆升剥蚀历史的重要组成部分之一,不同类型松散沉积物是固体碎屑物质差异输运的直接反映,揭示其空间分布规律及沉积总量,对于深入理解青藏高原的隆升与剥露过程具有重要参考价值。该数据集共包括雅鲁藏布江流域松散沉积物类型及其空间分布图集、厚度空间分布图集和沉积总量估算表等三类图表数据集,以遥感解译与地质填图为主要技术方法,全面厘清了雅鲁藏布江全流域范围内(16个复合子流域)松散沉积物的类型及其空间展布特征,并依据全流域松散沉积物厚度实测数据初步估算了沉积总量。巨量松散沉积物也是流域内滑坡、泥石流、洪沙灾害的重要物质来源,查明其空间展布规模与总量不仅对揭示沉积物源汇过程中记录的地表环境变化、区域构造运动、气候变化、生物地球化学循环等关键信息具有理论意义,同时对高原生态环境监测与保护、洪沙灾害预警与防治、重大基础工程建设和水土保持等具有重要应用价值。
林志鹏, 王成善, 韩中鹏, 白雅俪格, 王新航, 张建, 马星铎, 胡太宇, 张晨敬
本数据使用了大量的MODIS遥感影像,基于Google Earth Engine平台对青藏高原2000年至2018年地表植被覆盖情况进分析计算。植被指数(NDVI)是监测地面植被情况的重要指标。Terra中分辨率成像光谱仪(MODIS)植被指数3级产品(MOD13Q1)第6版数据每16天以250米的空间分辨率生成。基于GEE平台计算的年均NDVI指数可以反映出2000-2018年的植被盖度长时间变化趋势。同时,2000-2018多年平均NDVI指数反映了青藏高原地区的空间分布情况。植被指数(NDVI)的时空变化监测对于环境变化研究、可持续发展规划等是不可或缺的重要基础信息和关键参量,有助于理解气候变化背景下一些生态因子(气温、降水)等变化及其产生的影响。
邱海军
本数据集包括祁连山地区2021年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),MERRA-2气象再分析数据等。
姚云军, 刘绍民, 尚珂
该数据为喜马拉雅山区流域所在喜马拉雅山区1:25万地形数据,由STRM90m高程数据实体在ARCGIS软件中按喜马拉雅山区边界掩膜提取得到,为90M栅格分辨率。由于DEM描述的是地面高程信息,它在测绘、水文、气象、地貌、地质、土壤、工程建设、 通讯、军事等国民经济和国防建设以及人文和自然科学领域有着广泛的应用。在防洪减灾方面,DEM是进行水文分析如汇水区分析、水系网络分析、降雨分析、蓄洪计算、淹没分析等的基础。
王中根
植被净初级生产力(Net Primary Productivity, NPP)作为生态系统物质及能量循环的基础,能够反映区域和全球尺度植被的固碳能力,是评价陆地生态系统质量的重要指标。针对植被净初级生产力产品生产,基于光能利用率模型的原理耦合遥感、气象、植被及土壤类型数据进行了国家屏障区生态系统生产力建模研究。在参数的选择上,由SPOT/VEG ETATION NDVI卫星遥感数据、中国植被图、太阳总辐射值及温度等数据计算出光合有效辐射(APAR);根据区域蒸散模型模拟水分胁迫因子,与土壤水分子模型相比,它可以简化参数,增强模型的可操作性。将光合有效辐射和实际光能利用率作为CASA(Carnegie-Ames-Stanford Approach)模型的输入变量,基于参数化模型实现对青藏高原2000-2018年1km分辨率的陆地植被净初级生产力估算。
王晓峰
中国2000-2020年逐日积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为1天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。为了评估ChinaSA的反演质量,利用地面台站的观测数据提出了样方观测验证方法,验证了积雪反照率产品的精度,并与常用的四种反照率产品(GLASS、GlobAlbedo、MCD43A3和SAD)进行了精度对比。验证结果表明,ChinaSA在所有验证中精度都优于其他产品,均方根误差小于0.12,在森林区域的均方根误差能达到0.021。
肖鹏峰, 胡瑞, 张正, 秦棽
“一带一路”沿线国家植被覆盖状况恢复力反映了沿线国家植被覆盖状况恢复力水平,数据值越高,表明沿线国家植被覆盖状况恢复力越强。植被覆盖状况恢复力数据产品制备参考了2000-2020年MODIS MOD13A3数据集,数据集空间分辨率为1 KM,时间分辨率为1年,利用2000-2020年“一带一路”沿线国家NDVI的逐年数据,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了植被覆盖状况恢复力产品。“一带一路”沿线国家植被覆盖状况恢复力数据集对分析和对比当前各国植被覆盖状况恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家生态系统生产力恢复力反映了沿线国家生态系统生产力恢复力水平,数据值越高,表明沿线国家生态系统生产力恢复力越强。生态系统生产力恢复力数据产品制备参考了2000—2015年全球中等分辨率植被总初级生产力数据集,数据集空间分辨率为0.05°,时间分辨率为1年,利用2000-2015年“一带一路”沿线国家植被总初级生产力的逐年数据,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了生态系统生产力恢复力产品。“一带一路”沿线国家生态系统生产力恢复力数据集对分析和对比当前各国生态系统生产力恢复力状况具有重要参考意义。
徐新良
1)数据内容:本数据集包含2020年青藏高原地区Landsat时序SI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过SI的计算公式进行生产的,即基于红光波段和蓝光波段能够很好地反映土壤盐分的原理;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4)数据应用成果及前景:该指数能很好的反映土壤的盐分程度,可用于定量化评价盐渍化土壤。
彭燕
1)数据内容:本数据集包含2020年青藏高原地区Landsat时序地表温度产品。2)数据来源及加工方法:利用中国遥感卫星地面站接收存档的Landsat数据和实用单通道算法反演得到;3)数据质量描述:root-mean-square error(RMSE)约为1.23K。4)数据应用成果及前景:地表温度是一个常用的陆地表面参数,该数据集可为资源调查、生态环境监测、全球变化研究等相关领域的研究和应用提供数据产品支撑。
张兆明
1)数据内容:本数据集包含2020年青藏高原地区MODIS时序光合有效辐射分数(FPAR)产品、地表总初级生产力产品(GPP)产品、Npp产品、蒸散发产品(ET)和叶面积指数(LAI)产品。2)数据来源及加工方法:FPAR产品和LAI产品来自第六版MODIS Terra MOD15A2H产品集,GPP和NPP产品均来自MODIS Terra MOD17A2H产品集,蒸散发产品来自MODIS Terra MOD16A2;通过USGS网站下载,利用GDAL插件进行拼接和转投影得到;3)数据质量描述:每种产品均有相应的质量文件,标识了云、雪、无效值等,以有效位编码方式存储。4)数据应用成果及前景:在森林、农业、生态等领域长时序信息挖掘分析方面具有重要的应用价值。
贡成娟
该数据集包含了青海湖千户里小流域的高寒草甸观测的季节性冻土土壤活动层土壤温度和湿度高频观测数据,站点位于青海刚察县,处于沙柳河流域的支流上游,处于河谷东侧,海拔高度介于3565-3716m,海拔落差151 m,是典型的高寒草甸下垫面,观测点的经纬度为E100°15,37°25'N。 10层土壤水分SM(5cm、10cm、20cm、40cm、80cm、100cm、120cm、140cm、160cm和180cm)10层土壤温度ST(5cm、10cm、20cm、40cm、80cm、100cm、120cm、140cm、160cm和180cm)及10层土壤介电常数EC(5cm、10cm、20cm、40cm、80cm、100cm、120cm、140cm、160cm和180cm)。数据1-10编号对应相应(5cm、10cm、20cm、40cm、80cm、100cm、120cm、140cm、160cm和180cm)的土壤深度。 原始的采集器输出数据统一整理成30分钟采样周期并经过初步质量控制,将整理后的将数据30分钟存储,命名规则为:数据日期。 数据观测时段为2018年11月5日至2011年12月21日。2020年下半年数据缺失较多。时间分辨率半小时。该数据集可为率定土壤水热模型,及土壤活动层动态刻画提供数据支撑。
李小雁, 王佩
1)数据内容:本数据集为青藏高原东南三江流域滑坡灾害数据;2)数据来源及加工方法:本数据集系北京工业大学戴福初利用谷歌地球独立解译完成;采用遥感解译-现场验证-再解译-再验证等方法,经过7次系统解译最终形成本数据文件,累计对超过5000处滑坡开展了现场验证,具有较高的精度;4)本数据对青藏高原东南三江流域水能资源开发、交通工程建设、地质灾害评价等方面具有广阔的应用前景。
戴福初
青藏高原灾害编录包含了多种历史灾害的空间分布与类型信息,范围西至巴基斯坦、克什米尔地区,东至青海省,南至喜马拉雅山山麓,北至阿尔金山山麓。数据的生产是由大量人工遥感解译、实地考察、收集地调数据与开源数据结合完成的。数据以矢量点的形式储存,主要内含属性表注明灾害类型、坐标等信息。本数据可以应用于研究灾害的空间分布规律与灾害评价工作。本数据共包含23536条数据,泥石流数据由于参考了地调数据,大多沿路分布,无人区则数据较少。
唐晨晓
本数据集为青藏高原区域2016-2019年0.02° x0.02°地表反照率日变化产品。采用耦合地形因子的多源遥感数据协同反演的BRDF模型(Extended Multi-Sensor Combined BRDF Inversion model (EMCBI)),并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)和AHI天顶反射率数据集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日内变化的反照率,其中,黑空反照率的太阳入射为北京时间8:00-18:00逐小时的入射(UTM time zone 8)。经过验证评估,日内变化的反照率更能有效捕捉反照率的日变化,可有效支撑青藏高原地区辐射平衡、环境变化研究。
闻建光, 游冬琴, 唐勇, 韩源
本数据集为青藏高原区域2002-2020年日分辨率0.00425° x0.00425°地表反照率产品。基于MODIS反射率数据,采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率,其中,黑空反照率的太阳入射为当地正午时太阳入射。经过验证评估,满足反照率应用精度要求,相较于同类产品在山区站点的验证精度更高,且时空连续性更好。可有效支撑青藏高原地区辐射平衡、环境变化研究。
闻建光, 游冬琴, 唐勇, 韩源
数据内容:伊塞克湖流域2019年种植结构数据集。 数据来源及加工方法:从2019年中提取出5月-6月,7月-8月和9月-10月三个时间段,将每个时间段内云量最少,质量最高的哨兵2号数据拼接为一张完整地图,得到咸海流域三期哨兵2号遥感影像。在此基础上求出三期影像的NDVI结果,以哨兵2数据的不同波段和NDVI结果为基础,再结合耕地数据和实地采样数据,用随机森林算法对其分类,最终得到每个地块上的种植结构类型。 数据质量:空间分辨率为10m×10m,时间分辨率为年,Kappa系数0.8。 数据应用成果:可用于农作物产量估算和水资源利用效率计算。
刘铁
数据内容:咸海流域2019年归一化植被指数数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD13A2产品第一波段作为归一化植被指数数据,乘以比例因子0.0001。 数据质量:空间分辨率为1000m×1000m,时间分辨率为一个月,每个像元的值为每个月的归一化植被指数的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据相结合分析某种植被类型的区域分布。
刘铁
数据内容:咸海流域2019年反照率数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MCD43A1产品中的"BRDF_Albedo_Parameters_nn. Num_Parameters_01",“BRDF_Albedo_Parameters_nn. Num_Parameters_02“和“BRDF_Albedo_Parameters_nn. Num_Parameters_03”波段,参考MODIS官方算法,计算得出白天反照率和夜间反照率,乘以比例因子0.001。 数据质量:空间分辨率为500m×500m,时间分辨率为8天,每个像元的值为八天地表反照率的平均值。 数据应用成果:作为重要参数可反演地表蒸散发。
刘铁
数据内容:咸海流域2019年地表温度数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD11A2产品第一波段作为地表温度数据,乘以比例因子0.02。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天,每个像元的值为八天地表温度的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它气象数据相结合分析某种植被类型的区域分布。
刘铁
数据内容:咸海流域2019年土壤湿度数据。 数据来源及加工方法:来源于美国国家航空航天局,对每天的土壤湿度数据相加得到各月土壤湿度之和,再除以天数得到每月土壤湿度的平均值。 数据质量:空间分辨率为0.25°×0.25°,时间分辨率为月,每个像元的值为每月土壤湿度的平均值。 数据应用成果及前景:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它气象数据相结合分析某种植被类型的区域分布
刘铁
数据内容:咸海流域2019年叶面积指数数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD15A2产品第二波段作为叶面积指数数据,乘以比例因子0.1。 数据质量:空间分辨率为500m×500m,时间分辨率为8天,每个像元的值为八天叶面积指数的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据相结合分析某种植被类型的区域分布。
刘铁
数据内容:咸海流域2019年蒸散发数据集。 数据来源及加工方法:借助IDL平台,利用SEBS算法和美国国家航空航天局中分辨率成像光谱仪(MODIS)相关数据,求出2019年咸海流域蒸散发结果。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天。 数据应用成果及前景:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据和生态数据相结合分析土地退化和水资源利用效率情况。
刘铁
那曲土壤温湿度观测网位于青藏高原中部100 km x 100 km的空间范围,站点平均海拔4650米。观测网提供三个空间尺度(1°、0.3°、0.1°)的土壤水分、温度以及冻融信息,旨在为一系列卫星遥感和水文气象研究提供支持。 观测网详细信息: (1)站点数目:57 (2)观测变量:土壤湿度、土壤温度 (3)观测深度:0-5 cm、10 cm、20 cm、40cm (4)空间范围:31°-32°N; 91.5°-92.5°E (5)空间尺度:1°x 1°(对应GCM网格尺度)、0.3°x 0.3°(对应被动微波卫星象元尺度)、0.1°x 0.1°(对应主被动融合微波象元尺度) (6)记录间隔:30 min (7)测量精度: ±2%(土壤水分);±1℃(土壤温度) 数据文件字段描述: (1)变量1-6:观测时间(yyyy-mm-dd-hh-mm-ss;北京时间,UTC+8) (2)变量7-78:各站点观测值(实型,缺省值:-99.00) (3)土壤水分(SM):体积含量,单位:%vol(m3/m3) (4)土壤温度(ST): 单位:℃ 数据校正与质量控制: (1)土壤水分:基于实测土壤质地和有机质对“介电常数-土壤水分”转换公式进行校正 (2)土壤温度:针对实测数据进行合理物理范围内的质量控制
阳坤
本数据集是一个包含接近35年(1984-2018)的全球高分辨率光合有效辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于生态过程模拟和全球碳循环的理解。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据、MERRA-2气溶胶数据以及MODIS反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来生态过程模拟的研究和全球二氧化碳通量的估算。
唐文君
1)数据内容:采用修正通用水土流失方程(RUSLE)估算地块尺度土壤水蚀模数,利用土壤保持量衡量生态系统减少降水导致土壤侵蚀的能力,表征植被作用引起的水蚀减少量,即实际地表覆盖条件下与极度退化状态下土壤水蚀量的差值。依据上述过程做出30年(1990-2020年,每5年一期)青藏高原生态功能图,包含水源涵养和土壤保持数据集两部分。 2)数据来源及加工方法:该图集基于生态系统类型数据、MODIS的NDVI产品、1:100万土壤属性数据、气象插值与高程等数据,采用降水贮存量法估算森林、草地生态系统的水源涵养量,以生态系统水文调节效应衡量其涵养水分的能力, 即与裸地相比涵养水分的增量。 3)数据质量:数据时间分辨率5年,空间分辨率1000m,可满足青藏高原高精度生态系统评估研究需求。 4)数据应用成果及前景:统计结果表明,近30年,青藏高原水源涵养功能量空间分布上呈现东南部高、西北部低,自东南部向西北部逐渐降低的总体分布格局。土壤保持量整体呈现波动中增加趋势,西部与南部大部分区域土壤保持功能量呈现减少趋势,其中南部减小趋势明显,东部地区呈现增加趋势。
曹巍, 黄麟
此数据集是基于中科院中国土地利用现状遥感监测数据集,经过裁剪、拼接等操作得到的1985年祁连山国家公园土地利用类型的数据。数据生产制作是利用Landsat TM/ETM遥感影像为主要数据源,通过人工目视解译生成,得到的矢量数据。土地利用类型包括耕地、森林、灌木林、草地、湿地、水体、苔原、人造表面、裸地、冰川和永久积雪这10个一级类型。可以分析祁连山区域历史的土地利用类型,并结合当前的土地利用类型数据,分析祁连山区域土地利用类型的变化。
年雁云
基于遥感的全球表层土壤水旬度数据集(RSSSM,2003~2020)是在世界11种常用的全球微波遥感土壤水数据产品基础上,采用神经网络方法,融入了9个微波遥感反演土壤水分的质量影响因子完成。数据空间分辨率是0.1度,时间分辨率为旬。原数据覆盖2003~2018年,现更新至2020年。RSSSM数据集的时间连续性突出,除冰雪和水体外实现空间全覆盖。通过全球实测数据进行检验,可证明RSSSM数据集较已有的常用全球或区域长时间序列表层土壤水产品具有更高的时空格局精度。此外,虽然RSSSM数据是基于遥感的,未融合任何降水资料,但其年际变异与降水量(如GPM IMERG降水数据)和标准化降水蒸散发指数(SPEI)的时间变异均可较好地吻合。RSSSM数据还可一定程度反映城市化、农田灌溉、植被恢复等人类活动对土壤水分的影响。数据为tiff格式,压缩后的数据量为2.48 GB。 数据论文于2021年发表在Earth System Science Data。
陈永喆, 冯晓明, 傅伯杰
木里煤矿是青藏高原的一个典型工矿区,以木里煤矿为例,在区域的划定上,我们采取其东西南北四个方位的坐标界限对其进行裁剪,得到一个矩形区域,并将其作为木里煤矿的矿区范围。我们采用中国科学院地理所资源环境与数据中心提供的全国1km土地利用遥感监测数据,其中2000、2005、2010年三期的数据生产制作是以各期Landsat TM/ETM遥感影像为主要数据源,2015、2020年两期以Landsat8 OLI/TIRS遥感影像为主要数据源,并均通过人工目视解译生成。裁剪出木里矿区,得到2000-2020年五期土地利用数据,数据格式为栅格TIF,分辨率为1km。
刘振伟, 陈少辉
激光雷达、多光谱和热红外数据是水文、生态、环境监测等研究领域的重要观测数据。本数据集为2020年黑河中游天地一体化综合观测试验无人机观测数据。数据集包括2020年8月16日至21日的无人机遥感数据,无人机平台为大疆精灵4-多光谱版。包括大满超级站(8月16日至21日)、花寨子站(8月19日)、湿地站(8月21日)的激光雷达数据,激光扫描系统为Tovos DroneScan,扫描频率30万点/秒,点密度100点/平方米,扫描精度5厘米;大满超级站(8月18日)、花寨子站(8月19日)、湿地站(8月21日)的多光谱数据,数据集包括5个波段影像,分别为蓝(450nm±16nm)、绿(560nm±16nm)、红(650nm±16nm)、红边(730nm±16nm)、近红外(840nm±26nm)波段;以及湿地站和花寨子站对应生成的NDVI和反射率数据产品,以上数据的空间分辨率约为0.2m;此外,还包括花寨子站(8月18日和19日)、湿地站(8月21日)的热红外数据,热红外通道的波长范围:7.5-13.5μm,成像系统灵敏度(NEDT)< 50MK,最高帧率:30HZ,场景范围(高增益):640×512: -25°至135℃,336×256: -25°至100℃,场景范围(低增益):-40°至550℃。
晋锐
Accurate estimation of the gross primary production (GPP) of terrestrial vegetation is vital for understanding the global carbon cycle and predicting future climate change. Multiple GPP products are currently available based on different methods, but their performances vary substantially when validated against GPP estimates from eddy covariance data. This paper provides a new GPP dataset at moderate spatial (500 m) and temporal (8-day) resolutions over the entire globe for 2000–2016. This GPP dataset is based on an improved light use efficiency theory and is driven by satellite data from MODIS and climate data from NCEP Reanalysis II. It also employs a state-of-the-art vegetation index (VI) gap-filling and smoothing algorithm and a separate treatment for C3/C4 photosynthesis pathways. All these improvements aim to solve several critical problems existing in current GPP products. With a satisfactory performance when validated against in situ GPP estimates, this dataset offers an alternative GPP estimate for regional to global carbon cycle studies.
张尧
Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05∘ 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIFclear-inst) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIFall-daily) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIFyield, the ratio between OCO-2 SIF and CSIFclear-inst can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIFall-daily with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate.
张尧
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。
宋沛林, 张永强
该数据集主要包括北温带湖泊在1985-2020年间4个时段的结冰观测频率值(ICO),以及湖泊所在位置、面积、高程等信息。其中,4个时间段分别为1985-1998(P1)、1999-2006(P2)、2007-2014(P3)以及2015-2020(P4),目的是提高计算时段内的“有效观测”次数,进而提高准确度。4个时段的ICO由各个时段内所有Landsat影像统计的“结冰”次数与“有效观测”次数的比值计算,其他的湖泊信息通过表格中的“Hylak_id”列与HydroLAKEs数据集相对应。此外,该数据仅保留了P1-P4均观测有效,且面积大于1平方千米的湖泊,约为3万个。该数据集可以反映近几十年来湖泊结冰情况对气候变化的响应。(详见论文)
王欣驰
该数据集包含2003-2019年江苏省十大湖泊(太湖、洪泽湖、高邮湖、骆马湖、石臼湖、滆湖、阳澄湖、白马湖、邵伯湖和淀山湖)的水位、面积和水量变化,为研究江苏省近年来的湖泊水文生态系统平衡提供了重要的参数。 十大湖泊的水位数据基于Envisat/RA-2、Cryosat-2、ICESat、ICESat-2测高卫星获得;面积数据基于Landsat TM/OLI光学影像采用改进的归一化水体指数提取。对水位数据完整的四个湖泊(洪泽湖、高邮湖、滆湖和太湖),根据水位和面积结果估算了2003-2019年的水量变化。 与实测水位对比,卫星测高获取的所有湖泊的水位都有显著的一致性(α = 0.05),平均绝对误差为0.168 m。 该数据集提供了2003-2019年江苏省十大湖泊的水位、面积和水量变化,可以为江苏省水资源的管理与调度提供数据支持。
柯长青, 常翔宇, 蔡宇, 夏文韬
本数据包括第二次青藏高原野外综合科学考察的影像资料。影像资料内容包括科考途中自然保护区采集样方的样地照片,云南西北部和四川西部自然保护区的森林生态系统,草地生态系统,湖泊生态系统的影像,植被情况,野生动植物生境,保护区内的动物,植物和真菌类数据。此外,影像数据还包括科考的样品采集过程和社区调查中科考队员入户调查以及与当地保护部门访谈的影像资料。数据来源于无人机和相机拍摄,可为科学研究提供佐证和参考。
苏旭坤
本植被含水量数据集来源于滦河流域土壤水分遥感试验中的地面同步观测,包括:(1)70 km×12 km 典型试验区(南北航线)的17个样区;(2)165 km×5 km复杂试验区(东北—西南航线)的8个样区;(3)地基微波辐射计观测的6个样区。地物类型包括草地、玉米、土豆、莜麦和胡萝卜。数据测量时间为2018年9月13日到2018年9月26日。植被含水量的测量方法为收获法,行播作物按照长度进行收获,草地按照面积进行收获。本数据集经过称重、烘干和植被含水量计算等步骤处理得到。
郑兴明, 姜涛
该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1°。此外,还包括在气候驱动下(无人类干扰)的以上11个生态系统参量在2001~2018年间的时空变化。因此,该数据集可以反映气候变化与人类活动对21世纪中国陆地生产系统的影响。
陈永喆, 冯晓明, 田汉勤, 武旭同, 高镇, 冯宇, 朴世龙, 吕楠, 潘乃青, 傅伯杰
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件