该数据集是通过中国高分辨率对地观测中心获取了青藏工程走廊地区的高分1号卫星遥感影像资料,经过多光谱与全色波段的融合处理,得到了空间分辨率2 m的影像数据,在获取地面植被信息过程中,采用面向对象的计算机自动解译与人工目视解译相结合的分类技术,面向对象分类技术是集合邻近像元为对象来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。在实际操作中,借助 eCognition 软件对影像进行自动提取,主要过程为影像分割、信息提取和精度评价。经过与实地定点调查验证,整体提取精度大于90%。
牛富俊
中国2000-2020年去云积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为8天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。
肖鹏峰, 胡瑞, 张正, 秦棽
中国2000-2020年逐日积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为1天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。为了评估ChinaSA的反演质量,利用地面台站的观测数据提出了样方观测验证方法,验证了积雪反照率产品的精度,并与常用的四种反照率产品(GLASS、GlobAlbedo、MCD43A3和SAD)进行了精度对比。验证结果表明,ChinaSA在所有验证中精度都优于其他产品,均方根误差小于0.12,在森林区域的均方根误差能达到0.021。
肖鹏峰, 胡瑞, 张正, 秦棽
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。
宋沛林, 张永强
本数据为祁连山地区2019年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2019年祁连山全境的高分系列影像。参考数据为谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2019年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
本数据为祁连山地区2020年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2020年祁连山全境的高分系列影像。参考数据为谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2020年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
本数据集包括祁连山地区2019年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(TRIMS LST-TP),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
青藏高原念青唐古拉山地区高分辨率(5m)冰川高程变化数据集,包括该地区2000‒2013和2000‒2017两个时间段的冰川高程变化数据。具体区域为念青唐古拉山西段的纳木错地区以及东段的岗日嘎布地区,冰川边界参考国际上通用的Randolph Glacier Inventory Version 4.0(RGI 4.0)。冰川高程变化分别由高分辨率资源三号三线阵立体像对数据(ZY-3 TLA)生成的2013年和2017年DEM数据与2000年的SRTM DEM数据通过DEM差分技术得到。其中西段数据有三期:2000‒2013、2013‒2017和2000‒2017;东段数据有一期:2000‒2017。 该数据集空间分辨率为5米,单位为m a^−1,数据格式为GeoTIFF,数据类型为浮点型,投影方式:西段为 UTM 46N,东段为UTM 47N。 该数据与现有的物质平衡实测数据及其它遥感观测的结果具有较好的一致性,但具有更高空间分辨率,可提供更详细的冰川高程变化的空间分布细节,将冰川高程变化乘以冰川的平均密度(通常为850±60 kg m^−3)即可转化为相应时间段内的冰川物质平衡 (单位为:w.e. a^−1),可为该地区冰川高程变化和物质平衡的研究提供数据支撑。
任少亭, 贾立
青藏高原是世界上最大的高、低纬度多年冻土带,近几十年来,其多年冻土带迅速退化,其最显著的特征之一就是热融湖塘的形成。这样的湖泊由于能够调节碳循环、水和能量通量而引起了极大的关注。然而,这一地区的热融湖塘的分布在很大程度上仍不为人所知,这阻碍了我们对多年冻土的响应及其碳反馈对气候变化的理解。本数据集基于200余景Sentinel-2A影像,结合ArcGIS、NDWI和Google Earth Engine平台,通过GEE自动提取和人工目视解译的方法提提取青藏高原多年冻土区内热融湖塘边界。在2018年热融湖塘数据集中,青藏高原多年冻土区共有121,758个热融湖塘,面积为0.00035-0.5 km²,总面积为1730 km² 。本次热融湖塘编目数据集为青藏高原水资源评价、多年冻土退化评价、热喀斯特研究提供了基础数据。
陈旭, 牟翠翠, 贾麟, 李志龙, 范成彦, 母梅, 彭小清, 吴晓东
本数据集包括祁连山地区2018年日值0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
数据集包括2015年11月27日- 2016年3月26日阿勒泰基站(lon:88.07, lon: 44.73)地面被动微波亮温、多角度亮温、10分钟四分量辐射和雪温、雪坑日观测数据和逐时气象数据。 日雪坑参数包括:积雪分层、分层厚度、密度、粒度、温度。 这些数据存储在5个NetCDF文件中,TBdata.nc, TBdata-multiangle.nc, Ten-minute 4 component radiation and snow temperature.nc, Hourly meteorological and soil data.nc and Daily snow pit data.nc,以及readme.doc。 TBdata.nc 为六通道双偏振微波辐射计RPG-6CH-DP自动采集的两偏振三个通道的亮度温度。内容包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 TBdata-multiangle.nc为两种极化的3个通道的7组多角度亮度温度。 包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 The ten-minute 4 component radiation and snow temperature. nc 为4组分辐射和层状雪温度。 内容包括:年、月、日、时、分、SR_DOWN、SR_UP、LR_DOWN、LR_UP、T_Sensor、ST_0cm、ST_5cm、ST_15cm、ST_25cm、ST_35cm、ST_45cm、ST_55cm。 The hourly meteorological and soil data.nc为每小时天气数据和分层土壤数据。内容包括年、月、日、时、Tair、Wair、Pair、Win、SM_10cm、SM_20cm、Tsoil_5cm、Tsoil_10cm、tsoil_15cm、Tsoil_20cm。 The daily snow pit data.nc为人工雪坑数据。观测时间为当地时间上午8:00-10:100。内容包括年、月、日、雪深、thickness_layer1、thickness_layer2、thickness_layer4、thickness_layer5、thickness_layer6、Long_layer1、Short_layer1、Long_layer2、Short_layer2、Long_layer3、Short_layer4、Long_layer5、Short_layer5、Long_layer6、short_layer6、Stube、snow shovel_0-10、 雪铲_10-20、雪铲_20-30、雪铲_30-40、雪铲_40-50、雪叉_10、雪叉_15、雪叉_20、雪叉_25、雪叉_30、雪叉_35、雪叉_40、雪叉_45、雪叉_50、形状1、形状2、形状3、形状4、形状5。
戴礼云
Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).
Sher Muhammad
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
使用Sentine-1 SAR 数据对青藏高原黑河流域野牛沟冻土进行监测。采用2014~2018年野牛沟区域Sentine-1 SAR影像,利用了基于分布式雷达目标的小基线集时序InSAR(DSs-SBAS)冻土形变监测方法,结合SAR后向散射系数,MODIS地表温度和Stefan模型,估算了研究区活动层厚度。结果表明活动层厚度在0.8米至6.6米之间,平均值约为3.3米。对开展大范围、高分辨监测具有十分重要的意义。
江利明
全球气候变暖及人类活动导致青藏高原大面积冻土退化、热融滑塌等问题,严重影响了多年冻土区工程建设和生态环境。以青藏高原黑河流域俄博岭的冻土为研究区,基于高分辨率卫星影像,利用机器学习面向对象分类技术提取研究区内热融滑塌信息,结果表明2009年至2019年研究区热融滑塌数量从12条增至16条,总面积由14718.9平方米增至28579.5平方米,增加了近两倍。高空间分辨率遥感与面向对象分类方法相结合在冻土热融滑塌监测中具有广阔的应用前景。
江利明
本数据集包括祁连山地区2017年日值0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周济-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包括祁连山地区2005年、2010年、2015年月0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包括祁连山地区2002年6月19日至2018年12月30日SMAP时间扩展日0.25°×0.25°地表土壤水分产品。采用随机森林方法,利用AMSR-E和AMSR2 6.925 GHz V/H,10.65 GHz V/H及36.5 GHz V五个通道的亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包括祁连山地区1980、1985、1990、1995和2000年SMAP时间扩展月值0.25°×0.25°地表土壤水分产品。采用随机森林方法,利用SMMR,SSM/I和SSMIS 19 GHz V/H及37 GHz V三个通道的亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
将冰湖划分为冰面湖、与冰川末端相连和非相连湖泊等三种类型。在分类的基础上,研究第三极地区各流域冰湖的数量与面积、不同大小面积变化幅度、与冰川距离远近、有冰川融水径流补给与无冰川融水径流补给冰湖面积的变化差异以及冰湖面积随海拔梯度变化特征等内容。 数据源:Landsat TM/ETM+ 1990,2000,2010。 数据通过目视解译,包括面积大于0.003平方公里的冰湖数据,结合原始影像与Google Earth检查编辑。 数据应用于第三极地区冰湖变化与冰湖溃决洪水( GLOF) 评估。 数据类型:矢量。 投影坐标系:Albers Conical Equal Area。
张国庆
全球Cryosat-2 GDR数据集由欧空局(ESA)制作,数据覆盖时间从2010年到2016年,覆盖范围为全球。 2010年4月8号,ESA发射了Cryosat - 2高倾斜极轨卫星。该卫星上搭载了合成孔径干涉雷达高度计SIRAL,主要用于监测极地的冰层厚度和海冰厚度变化,进而研究极地冰层的融化对全球海平面上升的影响,以及全球气候变化对南极冰厚的影响。这种高度计工作在Ku波段,工作频率为13.575 GHz,包括3种测量模式:一是低分辨率指向星下点的高度计测量模式(LRM),可获得陆地、海洋和冰盖所有表面观测值,它的处理过程与ENVISAT/RA - 2 类似,沿轨分辨率为5到7 km;二是合成孔径雷达(SAR)测量模式,主要为提高海冰观测精度和分辨率,可使沿轨分辨率达到250 m左右;三是干涉合成孔径雷达模式(InSAR),主要为提高冰盖或冰架边缘等地形复杂区域精度。 Cryosat -2/SIRAL数据产品主要包括0级数据、1b级数据、2级数据和高级数据。Cryosat - 2/SIRAL产品由XML头文件(.HDR)和数据产品文件(.DBL)两个文件组成,HDR文件是辅助性的ASCII文件,用于快速识别检索数据文件。1b级产品是按照测量模式分开存储的,不同模式的数据记录格式也有所不同。LRM模式和SAR模式的每个波形有128个采样点,SARIn模式的波形则有512个采样点。2级GDR产品可以满足大多数的科学研究应用,包括了测量时间、地理位置、高度等信息。并且,GDR产品中的高度信息已经经过了仪器校正、传输延迟改正、几何改正和地球物理改正(如大气改正与潮汐改正)。GDR产品是单独的全球性的全轨道数据,即三种模式的测量结果,经过不同的处理过程后,按照时间先后顺序,合并到一起,从而统一了数据记录格式。三种模式的数据采用了不同的波形重跟踪算法来获得高度值,在最新更新的Baseline C数据中,LRM模式的数据采用了3种算法,分别为Refined CFI、UCL和Refined OCOG。
沈国状, 傅文学
Sentinel-1A/B卫星使用近极地太阳同步轨道,轨道高度693 km,轨道倾角98.18°,轨道周期99 min,搭载了C波段合成孔径雷达(SAR),设计使用寿命为7年(预期12年)Sentinel-l 具有多种成像方式,可实现单极化、双极化等不同的极化方式。Sentinel-1A SAR共有4种工作模式:条带模式(Strip Map Mode,SM)、超宽幅模式 (Extra Wide Swath,EW)、宽幅干涉模式 (Interferometric Wide Swath,IW) 和波模式 (Wave Mode,WV)。A星于2014年4月成功发射,同一区域重访周期为12天,B星2016年4月成功在轨运行,目前重返周期达到3-6天,双星运行以后,南极地区S1数据获取频率大幅度增加。 本数据集为南极冰盖和格陵兰冰盖地区哨兵一号SAR数据。 该数据波段为C波段超宽幅地距多视数据,分辨率为20m*40m, 时间分辨率和往返周期有关,为12天,幅宽为400km,噪声水平为-25dB,辐射测量精度1.0dB。 本数据每年覆盖时间为:南极10月到来年3月,格陵兰4月到9月;覆盖范围南极冰盖冰架地区和格陵兰冰盖。
张露
随着SAR干涉测量技术的不断进步,使得高精度获取冰川区的多时相DEM成为了可能。特别是,2000年美国国家航空航天局(NASA)主导的航天飞机雷达制图计划(SRTM)提供了覆盖全球56ºS - 60ºN范围的DEM资料;德国宇航局(DLR)的TanDEM-X双站SAR干涉测量系统能够提供全球范围高分辨率、高精度DEM。这些高质量、大覆盖范围的SAR干涉测量数据,以及发布的DEM数据产品,为利用多时相DEM探测冰川厚度变化提供了宝贵的基础资料。 青藏高原典型冰川厚度变化数据的时间段为2000-2013年,覆盖范围为普若岗日和祁连山西部地区,空间分辨率30米。利用TanDEM-X双站InSAR数据和C波段 SRTM DEM,首先采用差分干涉测量方法高精度的生成TanDEM-X DEM,然后在进行DEM精确配准的基础上,通过对比不同时期获取的DEM数据,估算冰川厚度变化。该数据集采用Geotiff格式,每个典型冰川冰厚变化存储为一个文件夹。 数据的详细情况见青藏高原典型冰川厚度变化数据集-数据说明。
江利明
该数据为2005年格陵兰岛地区ENVISAT-1卫星ASAR传感器获取的Wide Swath模式Level 1B级SAR数据,幅宽400km,空间分辨率为75m,绝对定位精度约为200米。 该SAR数据在存储时都是以时间增长为序的方式存储的,这使的下行轨道的图象为左右镜象,而上行轨道的图象为上下镜象。 该数据的命名规则如下例所示: ASA_IMS_1PPIPA 20050402_095556_000000162036_00065_16151_0388.N1 ASA: 产品标识,ASAR传感器 IMS: 数据的接收、处理信息(成像模式,如WS,WSS,IM,...) 1PPIPA:订制的编号 20050402: 数据获取的时间(UTC时间) 095556:地理位置(开始、结束) 000000162036:卫星轨道信息 00065:产品信任数据 16151:产品大小、结构信息 0388 => 校验码
惠凤鸣
八宝河流域逐日无云MODIS积雪面积比例数据集(2008.1.1-2014.6.1)是在MODIS逐日积雪产品—MOD10A1的基础上,采用一种基于三次样条函数插值的去云算法进行去云处理后得到(唐志广,2013)。 该数据集采用UTM(横轴等角割圆柱)投影方式,空间分辨率500m,提供逐日的八宝河流域积雪反照率(Snow Albedo Daily-SAD)结果。数据集为逐日文件,从2008年1月1日到2014年6月1日。每个文件为当日的积雪反照率结果,数值为0-100(%),为ENVI标准文件,命名规则为:MOD10A1.AYYYYddd_h25v05_Snow_SAD_Grid_2D_reproj_babaohe_nocloud.img,其中YYYY代表年, ddd代表儒略日(001-365/366)。文件可直接用ENVI或者ARCMAP等软件打开察看。 进行去云处理的原始MODIS积雪数据产品来源于由美国国家雪冰数据中心(NSIDC)处理的MOD10A1产品,这一数据集为hdf格式,采用sinusoidal投影。 八宝河流域逐日无云MODIS反照率数据集(2008.1.1-2014.1.1)属性由该数据集的时空分辨率、投影信息、数据格式组成。 时空分辨率:时间分辨率为逐日,空间分辨率为500m,经度范围为100.2°~101.2°E,纬度为37.6°~38.3°N。 投影信息:UTM(横轴等角割圆柱)投影。 数据格式:ENVI标准格式。文件命名规则:"MOD10A1.A"+"YYYYddd"+"_h25v05_Snow_SAD_Grid_2D_reproj_babaohe_nocloud"+".img",其中YYYY代表年,ddd代表儒略日(001-365/366),其中该数据集的ENVI文件是由头文件和主体内容构成。头文件包括行数、列数、波段数、文件类型、数据类型、数据记录格式、和投影信息等;以2000055_FSC_0.5km.img 文件为例,其头文件信息如下: ENVI description = { ENVI File, Created [Wed Nov 26 11:50:00 2014]} samples = 187 lines = 132 bands = 1 header offset = 0 file type = ENVI Standard data type = 4 :代表byte型 interleave = bsq :数据记录格式为BSQ sensor type = Unknown byte order = 0 map info = {UTM, 1.000, 1.000, 596240.026, 4244174.613, 5.0000000000e+002, 5.0000000000e+002, 47, North, WGS-84, units=Meters} coordinate system string = {PROJCS["UTM_Zone_47N",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT ["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",0.0],PARAMETER ["Central_Meridian",99.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]} wavelength units = Unknown
王建, 潘海珠
2007年10月17日夜间,在阿柔样方2开展了Envisat ASAR数据的地面同步观测试验。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为23:04BJT。阿柔样方2为3Grid×3Grid,每个Grid为30m×30m,共计25个采样点(包含中心点和角点)。 与卫星过境同步,在阿柔样方2,采用ML2X土壤水分速测仪获取土壤体积含水量;采用WET土壤水分速测仪测量获得土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;手持式红外温度计获得地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。同时还对植被一些参数进行了相关调查,主要包括植被高度、覆盖度、植被含水量。地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本的地面数据集。
白云洁, 郝晓华, 晋锐, 李弘毅, 李新, 李哲
2008年3月20日有新降雪,选择在祁连县境内临时样地开展了针对新降雪的观测数据集,主要目的是观测新雪特征,并为积雪遥感参数反演提供了基本数据集。 观测内容包括: 1)新雪雪深、雪粒径(手持式显微镜测量)、雪密度(雪铲测量)等积雪主要参数测量; 2)新雪反照率(总辐射表测量); 3)新雪光谱特征测量(ASD光谱仪); 该数据集包括原始数据与预处理数据2个文件夹。
盖春梅, 舒乐乐, 王旭峰, 徐瑱, 朱仕杰, 刘艳, 张璞
2008年3月17日在冰沟流域加密观测区开展的EO-1 Hyperion和Landsat TM卫星地面同步积雪参数观测,可为机载-星载遥感数据的积雪参数反演和验证提供基本的数据集。 观测内容包括: 1)积雪参数观测,观测变量包括:雪深(尺子)、分层雪深温度(针式温度计)、雪粒径(手持式显微镜)以及卫星过境时同步的雪表面和雪土界面温度(手持式红外温度计),该观测在样方BG-A、BG-E、BG-F、BG-H进行。 2)雪特性分析仪观测,观测变量包括有雪密度、雪复介电常数、雪体积含水量、雪重量含水量等。该观测在样地BG-A、BG-E和BG-H进行,此外还在冰沟寒区水文气象观测站进行了连续25小时的定点观测。 3)积雪光谱观测(由新疆气象局ASD光谱仪测量),观测点位置见GPS记录文件。 4)积雪反照率观测(总辐射表)。 本数据集包括原始数据和预处理数据2个文件夹。
白艳芬, 白云洁, 盖春梅, 郝晓华, 梁继, 舒乐乐, 王旭峰, 徐瑱, 朱仕杰, 马明国, 常存, 窦燕, 马忠国, 姜腾龙, 肖鹏峰, 刘艳, 张璞
预试验期间,2007年12月5日至12月15日在冰沟流域加密观测区开展了积雪光谱观测。观测的目的有两个:一是检验预定观测方案的可行性;二是为遥感反演提供验证数据集。所有数据均采用ASD光谱仪(新疆气象局光谱仪)获得。 观测内容包括: 1)2008年12月5日、12月6日、12月7日在冰沟寒区水文气象观测站附近选择积雪场进行积雪光谱的随机观测。 2)2008年12月10日在BG-A研究区进行MODIS和Terra MISR同步积雪光谱观测。 3)2008年12月13日、12月14日在BG-A进行的积雪纯像元和混合像元光谱特征分析试验。 4)2008年12月15日在BG-A选择积雪场进行积雪多角度光谱特征观测,使用的是寒旱所自制多角度观测架。 该数据集包括7个子文件夹,根据测量日期命名,测量日期分别为2007年12月5日、12月6日、12月7日、12月10日、12月13日、12月14日、12月15日,其中每个文件夹下包含原始数据和预处理数据,并附有数据说明。
张璞, 刘艳
2008年3月24日在冰沟流域开展的高光谱(PHI)航空地面同步观测,为积雪遥感参数反演提供了基本数据集。 观测内容包括: 1)雪特性分析仪观测,观测变量包括雪密度、雪复介电常数、雪体积含水量、雪重量含水量等,该测量在BG-A样地进行。 2)积雪参数观测,包括飞机过境时(11:11-12:35BJT)同步的雪表面温度(手持式红外温度计),分层雪深温度(针式温度计),雪粒径(手持式显微镜),雪密度(铝盒方式)。该观测分别在BG-A1、BG-A2、BG-B、BG-D、BG-E、BG-F5个样地进行。每个样点内有3个随机采样单元(ESU),例如E-1样点内,分为1、2和3ESU。 3)积雪反照率观测(总辐射表)。该观测在样地BG-A1进行。 4)积雪光谱观测(新疆气象局ASD光谱仪),该观测在样地BG-A11进行。 该数据集包括原始数据和预处理数据2个文件夹。
盖春梅, 顾娟, 郝晓华, 李弘毅, 李哲, 梁继, 马明国, 舒乐乐, 王建华, 王旭峰, 吴月茹, 徐瑱, 朱仕杰, 梁星涛, 刘志刚, 曲伟, 任杰, 方莉, 历华, 常存, 窦燕, 马忠国, 姜腾龙, 肖鹏峰, 刘艳, 张璞
2008年3月29日在冰沟流域加密观测区开展的Ka&K波段机载微波辐射计航空遥感地面同步观测,为积雪微波辐射特性及参数反演,尤其是雪深与雪水当量研究提供了基本数据集。 观测内容包括:1)雪特性分析仪观测,观测变量雪密度、雪复介电常数、雪体积含水量、雪重量含水量等,该测量在样地BG-A进行。2)积雪参数观测,包括雪深(塑料直尺),分层雪深温度(针式温度计两个测量值的平均值),雪粒径(手持显微镜),雪密度(环刀法)及卫星过境时同步的雪表面和雪土界面温度温度(手持式红外温度计),该观测分别在4个样地BG-A、BG-B、BG-EF、BG-I进行,其中BG-A测量(18个点),其它3个样地测量20个点。分层标准为挖积雪剖面,自上而下每10cm均匀分层,如果最后剩下的深度超过10cm而不足15cm则以一层划分。 该数据集包括原始数据和预处理数据2个文件夹。
白艳芬, 白云洁, 曹永攀, 盖春梅, 顾娟, 韩旭军, 郝晓华, 李弘毅, 李哲, 梁继, 马明国, 舒乐乐, 王旭峰, 徐瑱, 朱仕杰, 常存, 窦燕, 马忠国, 姜腾龙, 刘艳, 张璞
2008年3月16日在冰沟流域加密观测区开展的散射计地面同步观测,为进一步理解积雪微波辐射与散射特性提供了基础。 观测内容主要包括: 1)积雪后向散射系数观测(散射计测量); 2)积雪参数观测:雪表面温度(针式温度计)、雪粒径(手持式显微镜)、雪密度(雪铲)、雪表面和雪土界面温度(手持式红外温度计)、该观测在BG-I样地进行。 3)积雪光谱(新疆气象局提供的便携式光谱测量仪测量ASD),观测位置为大冬树山垭口,具体见GPS记录。同时利用筛子对雪层结构粒径的长短轴以及形状进行了观测。 4)积雪反照率(总辐射表测量),地点见GPS记录,观测时间为10:29到15:00,天空晴朗无云。 5)雪特性分析仪观测,观测变量包括雪密度、雪复介电常数、雪体积含水量、雪重量含水量等,观测位置为大冬树山垭口散射计观测位置附近。 该数据集包含原始数据和预处理数据2个子文件夹。
刘增灿, 秦伟, 舒乐乐, 王旭峰, 徐瑱, 朱仕杰, 马明国, 常存, 窦燕, 马忠国, 张璞, 姜腾龙
2008年3月14日在冰沟流域加密观测区开展的MODIS地面同步观测,主要目的是提供MODIS数据雪盖面积制图和雪面温度反演的验证数据集。 观测内容包括: 1)积雪参数观测,观测变量包括雪表面和雪土界面同步温度、地表温度(手持式红外温度计)、雪分层温度(针式温度计)、雪深、雪密度(尺子和雪铲)和雪粒径(手持式显微镜)以及卫星同步雪表面温度。 2)积雪反照率观测(总辐射表),在BG-A样地进行,观测时间为北京时间(BJT)2008年3月14日11:10到13:24。 3)积雪光谱观测(由新疆气象局ASD野外光谱仪测量),MODIS过境时刻在分别在BG-A、BG-I样地进行。 该数据集包括原始数据和预处理数据2个文件夹。
白艳芬, 白云洁, 盖春梅, 顾娟, 郝晓华, 李弘毅, 梁继, 舒乐乐, 王旭峰, 徐瑱, 马明国, 常存, 窦燕, 马忠国, 刘艳, 张璞
2008年6月10日,在临泽草地加密观测区样方A(芦苇地),样方B(盐碱地),样方C(盐碱地)、样方D(苜蓿地)和样方E(大麦地)开展了ALOS PALSAR数据的地面同步观测。 ALOS PALSAR数据为FBS模式,HH极化方式,过境时间约为23:39BJT。主要观测变量为土壤水分。本数据可为发展和验证主动微波遥感反演土壤水分和土壤盐分算法提供基本的地面数据集。 本数据观测在120m×120m,6Grid×6Grid样方内展开。观测内容为:样方A、样方B和样方C采用环刀取土经烘干获得重量含水量、体积含水量及土壤容重;针式温度计获得0-5cm平均土壤温度。样方D和样方E采用POGO便携式土壤传感器获得土壤温度、土壤水分、损耗正切、土壤电导率、土壤复介电常数实部及虚部;针式温度计获得0-5cm平均土壤温度。 本数据集共包括测量的5个样方的土壤水分数据Excel表格。 样方样带的分布信息请参见元数据“黑河综合遥感联合试验:临泽草地加密观测区样方样带布置”。
白艳芬, 曹永攀, 盖春梅, 胡晓利, 王树果, 王维真, 吴月茹, 朱仕杰, 冯磊
2007年10月18日,在阿柔样方1和阿柔样方2开展了Envisat ASAR数据的地面同步观测试验。Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:17BJT。阿柔样方1和阿柔样方2均为3Grid×3Grid,每个Grid为30m×30m,共计25个采样点(包含中心点和角点)。 在每个采样点,采用WET土壤水分速测仪测量获得土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;手持式红外温度计获得地表辐射温度;并用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。同时还对植被一些参数进行了相关调查,主要包括植被高度、覆盖度、植被含水量。地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本的地面数据集。
白云洁, 郝晓华, 晋锐, 李弘毅, 李新, 李哲
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件