中国区域PML-V2水碳耦合的陆地蒸散发与总初级生产力数据集,即PML-V2(China),包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为TIFF,时空分辨率为1天、500米,时间跨度为2000.02.26-2020.12.31。 与全球版本相比,PML-V2(China)产品在中国区域的模拟精度有很大的提升,且具有以下改进和创新: i. 相较于全球版本的八天分辨率,新产品的时间分辨率升至每日; ii. 观测数据来自中国26个涡动通量站,其下垫面包括植被稀疏的荒漠在内的9种植被功能型,并用于模型的参数校准(用于率定全球版产品的中国站点仅有8个,只覆盖5种植被类型); iii. 2000-2018年使用0.1°的中国区域气象要素驱动数据,2019-2020年使用偏差校正的全球陆面数据同化系统GLDAS-2.1气象数据,这些气象输入数据用来替换原先0.25°的GLDAS输入; iv. 使用ERA5陆地的地表温度取代空气温度作为输入,用于计算输出长波辐射; v. 将改进的Whittaker滤波的MODIS叶面积指数作为模型输入,新产品在监测作物耗水量和揭示种植制度特征方面提供了新的见解。 注:本数据集不包含中国南海部分。
张永强, 何韶阳
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。
宋沛林, 张永强
该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1°。此外,还包括在气候驱动下(无人类干扰)的以上11个生态系统参量在2001~2018年间的时空变化。因此,该数据集可以反映气候变化与人类活动对21世纪中国陆地生产系统的影响。
陈永喆, 冯晓明, 田汉勤, 武旭同, 高镇, 冯宇, 朴世龙, 吕楠, 潘乃青, 傅伯杰
透明度,作为一种最直观地反映水质特性的指标之一,能够综合地反映水体生态系统的营养状态。光学遥感技术为监测大范围湖泊(包括水库)透明度变化提供了可能。中国湖泊(>1公顷)透明度的年均值数据集覆盖时间从1990到2018年,时间分辨率为5年一期,空间分辨率为30米,使用的数据源为GEE平台的Landsat 长时间序列天顶角反射率产品数据。中国的青藏高原、蒙新高原和东北湖区的影像选择时间主要集中在每年5-10月的非冰期。研究团队利用3种实测透明度数据集进行中国湖泊透明度反演模型的构建与验证。第一种数据集是本研究团队在2004-2018年获取的野外实测数据,该数据集的3/4(976)用来建立模型(红/蓝波段比算法),精度为R2=0.79, rRMSE=61.9%;剩余的1/4(325)用来验证模型,精度为R2=0.80, rRMSE = 57.6%。另外两种数据集是用来验证透明度反演模型的时间迁移性,其中一种数据集是2007-2009年期间由中科院南京地理与湖泊研究所进行湖泊调查获取的实测数据(340),精度为R2=0.78,rRMSE = 59.1%;另一种数据集是1980s-1990s期间第一次湖泊调查结果(229),精度为R2=0.81,rRMSE = 50.6%。模型验证结果表明,透明度反演结果在时空上具有较好的精度和稳定性。最后,基于透明度反演模型,在GEE云平台上编写去云算法、水体指数算法等来实现中国湖泊透明度的反演。该数据集信息有助于决策者或者环境管理者更好改善和保护水质,维持区域的可持续发展。
陶慧, 宋开山, 刘阁, 王强, 温志丹
夜间灯光遥感(以下简称夜光)已经成为反映包括社会经济和能源消耗在内的人类活动的一个越来越重要的指标。现有夜光数据集(如美国国防气象卫星计划(DMSP)和国家极地轨道可见光红外成像辐射计(NPP))在时间范围和数据质量上都很有限。因此我们提出了一种夜间灯光卷积长短期记忆(NTLSTM)网络,并将该网络应用于生长出世界上第一套1984 - 2020年中国的人工夜间灯光数据集(PANDA)。模型与原始图像的模型评估显示,平均均方根误差(RMSE)达到0.73,决定系数(R2)达到0.95,像素级的线性斜率为0.99,表明生成产品的数据质量较高。模型结果可以很好地捕捉到新建成区的时间趋势。社会经济指标(建成区面积、国内生产总值、人口)与PANDA的相关性比现有的所有产品都更好,这表明它在寻找不同阶段夜间灯光变化的不同控制方面有更好的潜力。此外,PANDA描绘了不同的城市扩展类型,在代表道路网络方面胜过其他产品,并在早期提供了潜在的夜光景观。
张立贤, 任浙豪, 陈斌, 宫鹏, 付昊桓, 徐冰
本数据集为欧亚大陆温性草地类型时空变异图-中国区域三级分类图(1980S)。数据为tif栅格格式,空间分辨率为1公里,温性草地三级分类取值1-8分别为:1-温性草甸草原;2-温性典型草原;3-温性荒漠化草原;4-温性草原化荒漠;5-温性荒漠及三个非温性草地类型(6-高寒草地、7-其他植被区、8-非植被区)。 该数据以中国科学院植物研究所为主持单位的《中华人民共和国植被图(1 ∶1 000 000)》数据集为基础,结合历史气象等辅助资料分析处理而成,中华人民共和国植被图包含我国1980年代我国植被类型11 个植被型组、55 个植被型、960 个植被群系和亚群等植被信息,我们选择1980-1989历史气象数据,结合卫星数据进一步分析修正,并进行空间插值计算,得出我国温性草地三级分类。该数据可用于欧亚大陆温性草地分布信息以及时空变异分析提供依据。
唐家奎
中国土地利用现状遥感监测数据库是在国家科技支撑计划、中国科学院知识创新工程重要方向项目等多项重大科技项目的支持下经过多年的积累而建立的覆盖全国陆地区域的多时相土地利用现状数据库。 数据集包括1980年代末期,1990年、1995年、2000年、2005年、2010年,2015年七期,数据生产制作是以各期Landsat TM/ETM遥感影像为主要数据源,通过人工目视解译生成。数据缺少南海部分岛屿数据。 空间分辨率1公里,投影参数:Albers_Conic_Equal_Area 中央经线105,标准纬线1: 25,标准纬线2: 47。 中国土地利用现状遥感监测数据库是目前我国精度比较高的土地利用遥感监测数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。 土地利用类型包括耕地、林地、草地、水域、居民地和未利用土地6个一级类型以及25个二级类型。
中国科学院资源环境科学数据中心(http://www.resdc.cn/)
基于微波数据同化的中国土壤水分数据集包含2002-2011年3层土壤水分数据(0-5cm,5-20cm,20-100cm)。数据采用Yang et al.(2007) 发展的自动标定参数的陆面同化系统(ITPLDAS),以中国区域高时空分辨率的地面气象要素数据集(ITP-forcing数据集)驱动陆面过程模型SiB2,同化AMSR-E 卫星观测亮温,输出三层土壤水分数据。土壤水分均方根误差:5%VWC(在青藏高原那曲和玛曲的评估精度)。 数据文件名称: Soil-Moisture_from_ITPLDAS_daily_0.25deg_v2.1.nc 数据内容变量描述: 文件主要包括5个变量:lon、lat、lev、time及www; www(time, lev, lat, lon)是土壤水分含量(缺值为:-999.0), 其中lon、lat、lev、time分别是经度、纬度、深度及时间四个维度坐标。 变量单位描述: 土壤水分体积含量(www):m3/m3。 附:ncdump –h 命令可以直接查看头文件信息。
阳坤
本研究所用的数据由美国EROS(地球资源观测系统)数据中心的探路者数据库提供,其植被指数NDVI的制备过程为:采用经过辐射校正和几何粗校正的NOAA-AVHRR数据源,再进一步对每日、每轨图像进行几何精校正、除坏线、除云等处理,进而进行NDVI计算及合成。每日的NDVI计算公式为:1000×(b2-b1)/(b2+b1),其中b1、b2为AVHRR的第1、2通道。 Pathfinder AVHRR的参数表 参数/变量 定义 单元 值域 NDVI 归一化植被指数 无 (-1,1) CLAVR标识 从CLAVR算法中的云量指数 无 (0,30) QC标识 数据质量标识 无 (0,16) 扫描角度 传感器的角度 弧度 (-1.05,1.05) 太阳天顶角 每个像元的太阳天顶角 弧度 (0,1.04) 相对天顶角 传感器的相对天顶角 弧度 (-1.05,1.05) Ch1反射率 第一通道的反射率 (0.58-0.68um) 百分比 (0,100) Ch2反射率 第二通道的反射率 (0.72-1.10um) 百分比(0,100) Ch3亮温 第三通道的亮温值(3.55-3.95um) 开氏温标(160,340) Ch4亮温 第四通道的亮温值(10.3-11.3um)开氏温标(160,340) Ch5亮温 第五通道的亮温值(11.5-12.5um)开氏温标(160,340) 数据集包括1981至2001年6月至9月每旬中国子区NDVI的数据及1982、1986、1991和1996年全年各月每旬的数据(共84个月的343幅,其中1981年6月和7月第1旬、1994年9月第3旬缺少数据) 数据集属性及格式: 本数据集以年为文件夹进行存储,其中包含相同文件名下的.HDR头文件、.IMG文件和.JPG图像文件,其中IMG中数据以整数型进行存储。命名规则如下: avhrrpf.*.Intfgl.yymmdd_geo其中*代表ch1或ch2或ch4或ch5或ndvi,其具体含义与值域请参考表 1;yy代表年的末尾两位数;mm代表月份;dd代表具体日期。 数据投影: Size is 963, 688 Coordinate System is: GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], TOWGS84[0,0,0,0,0,0,0], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.0174532925199433, AUTHORITY["EPSG","9108"]], AUTHORITY["EPSG","4326"]] Origin = (70.035426000000001,54.945585999999999) Pixel Size = (0.072727000000000,-0.072727000000000) Corner Coordinates: Upper Left ( 70.0354260, 54.9455860) ( 70d 2'7.53"E, 54d56'44.11"N) Lower Left ( 70.0354260, 4.9094100) ( 70d 2'7.53"E, 4d54'33.88"N) Upper Right ( 140.0715270, 54.9455860) (140d 4'17.50"E, 54d56'44.11"N) Lower Right ( 140.0715270, 4.9094100) (140d 4'17.50"E, 4d54'33.88"N) Center ( 105.0534765, 29.9274980) (105d 3'12.52"E, 29d55'38.99"N) Band 1 Block=963x1 Type=UInt16, ColorInterp=Undefined Computed Min/Max=1.000,55480.000
Tucker, C.J., J.E.Pinzon, M.E.Brown
由欧洲联盟委员会赞助的VEGETATION传感器于1998年3月由SPOT-4搭载升空,从1998年4月开始接收用于全球植被覆盖观察的SPOTVGT数据,该数据由瑞典的Kiruna地面站负责接收,由位于法国Toulouse的图像质量监控中心负责图像质量并提供相关参数(如定标系数),最终由比利时弗莱芒技术研究所(Flemish Institute for Technological Research,Vito)VEGETATION影像处理中心(VEGETATION processing Centre,CTIV)负责预处理成逐日1km 全球数据。预处理包括大气校正,辐射校正,几何校正,生产10天最大化合成的NDVI数据,并将-1到-0.1的值设置为-0.1,再通过公式DN=(NDVI+0.1)/0.004转换到0-250的DN值。 该数据集是中国子集提取,包含每10天合成的四个波段的光谱反射率及10天最大化NDVI,为1998-2007年数据,空间分辨率为1km,时间分辨率为逐旬。 文件格式: .hfr和.img文件各一个。 文件命名规则为:CHN_NDV_YYYYMMDD,其中YYYYMMDD就是该文件代表的当天日期,也是区别于其他文件的主要标识。 用户用来分析植被指数的后缀名为.IMG和.HDF的遥感影像文件,都可以在ENVI和ERDAS软件中打开。 坐标系及投影 Plate_Carree (Lon/Lat) PROJ_CENTER_LON 0.000000 PROJ_CENTER_LAT 0.000000 PIXEL_SIZE_UNITS DEGREES/PIXEL PIXEL_SIZE_X 0.0089285714 PIXEL_SIZE_Y 0.0089285714 SEMI_AXIS_MAJ 6378137.000000 SEMI_AXIS_MIN 6356752.314000 UL_LON (DEG) 73.000000 UL_LAT (DEG) 54.000000 LR_LON (DEG) 135.500000 LR_LAT (DEG) 5.000000 角点坐标分别为: Corner Coordinates: Upper Left ( 69.9955357, 55.0044643) Lower Left ( 69.9955357, 14.9955358) Upper Right ( 137.0044641, 55.0044643) Lower Right ( 137.0044641, 14.9955358) 其中Upper Left 为左上角,Lower Left 为左下角,Upper Right 为右上角,Lower Right 为右下角。
Greet JANSSENS, Food and Agriculture Organization of the United Nations(FAO)
GIMMS(glaobal inventory modelling and mapping studies)NDVI数据是美国国家航天航空局(NASA)C-J-Tucker等人于2003年11月推出的最新全球植被指数变化数据。 该数据集包括了1981-2006年间的全球植被指数变化,格式为ENVI标准格式,投影为ALBERS,其时间分辨率是15天,空间分辨率8km。GIMMS NDVI数据采用卫星数据的格式记录了22a区域植被的变化情况。 1、文件格式: GIMMS-NDVI数据集中包含了从1981年7月至2006年间隔为15天的所有.rar压缩文件,解压以后包括1个XML文档、一个.HDR头文件、一个.IMG文件和一个.JPG图像文件。 2、文件命名: NOAA/AVHRR-NDVI数据集中的压缩文件命名规则为:YYMMM15a(b).n**-VIg_data_envi.rar,其中YY-年,MMM-简写的英文月份字母,15a-上半月份合成,15b-下半月份合成,**-卫星号。解压之后有4个文件,文件名不变,属性分别为:XML文档,头文件(后缀名为:.HDF),遥感影像文件(后缀名为:.IMG)和JPEG图像文件。这个数据集中,用户用来分析植被指数的是后缀名为.IMG的遥感影像文件文件。 用户用来分析植被指数的后缀名为.IMG和.HDF的遥感影像文件文件,都可以在ENVI和ERDAS软件中打开。 3、数据头文件信息如下: Coordinate System is: PROJECTION["Albers_Conic_Equal_Area"], PARAMETER["standard_parallel_1",25], PARAMETER["standard_parallel_2",47], PARAMETER["latitude_of_center",0], PARAMETER["longitude_of_center",105], PARAMETER["false_easting",0], PARAMETER["false_northing",0], UNIT["Meter",1]] Pixel Size = (8000.000000000000000,-8000.000000000000000) Corner Coordinates: Upper Left (-3922260.739, 6100362.950) ( 51d20'23.06"E, 46d21'21.43"N) Lower Left (-3922260.739, 1540362.950) ( 71d16'1.22"E, 8d41'42.21"N) Upper Right ( 3277739.261, 6100362.950) (151d 8'57.22"E, 49d 9'35.37"N) Lower Right ( 3277739.261, 1540362.950) (133d30'58.46"E, 10d37'13.35"N) Center ( -322260.739, 3820362.950) (101d22'21.08"E, 35d42'18.02"N) Band 1 Block=900x1 Type=Int16, ColorInterp=Undefined Computed Min/Max=-16066.000,11231.000 4.DN值与NDVI的转换关系 NDVI= DN/1000 ,2003年之后除以10000 NDVI值应在[-1,1]之间,此区间以外数据代表其他地物,如水体等。
Tucker, C.J., J.E.Pinzon, M.E.Brown
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件