陆表水域是陆地水循环中的重要载体。卫星遥感是陆表水体动态监测的有效手段,陆地水域时空演变可揭示自然因素及人类活动对水域的影响规律,对合理开发、利用和保护陆表水域有重要的意义。SSWMF全国逐月无缝陆表水域数据集是基于联合多源光学和雷达卫星观测、适用于大范围陆表水域动态监测方法SSWMF提取得到,输入数据包括MODIS、Landsat8、Sentinel 2的地表反射率数据和Sentinel 1的后向散射系数数据,基于Google Earth Engine遥感大数据平台计算得到。验证表明数据集的总体精度为92.39%。本数据集覆盖全国及周边区域,时间步长为每月,空间分辨率为30米。联合多星光学和雷达遥感的大范围陆表水域数据集可为湖泊水体动态、区域水旱灾害监测、水资源调查等提供帮助。
杨永民
数据集包含2002年至2018年中国陆地土壤水分数据,单位为m³/m³,时间分辨率为月,空间分辨率为0.05°。它由3个被动微波遥感产品制成:日本宇宙航空研究开发机构(JAXA)的 AMSR-E 的 Level 3 土壤水分数据和 AMSR2 的 Level 3 土壤水分数据,以及由法国农业科学研究院(INRA)和法国空间生物圈研究中心(CESBIO)研发的 SMOS 产品的土壤水分数据。为了应对被动微波土壤水分产品空间分辨率低的不足,研究人员基于温度植被干旱指数(TVDI)建立了空间权重分解(SWD)模型,其中,TVDI由中分辨率成像光谱仪(MODIS)的地表温度(LST)MYD11C3数据和归一化植被指数(NDVI)MYD13C2数据计算而来。整体而言,降尺度的土壤水分产品与实地测量结果一致(R >0.78),且均方根误差较低(ubRMSE < 0.05 m³/m³),这表明数据在整个时间序列中具有良好的准确性。数据集可以广泛应用于水文及干旱监测,并且可以作为生态和其他地球物理模型的重要输入参数。
毛克彪
本数据集包括祁连山区域2020年1月-12月月度最大值合成的30m空间分辨率地表植被净初生产力产品。利用 Landsat8 OLI 和sentinel 2多光谱遥感影像的红光和近红外两个通道的反射率数据,计算NDVI实现对地表月度NDVI产品的合成,进而利用经验模型计算NPP。最后,采用最大值合成 (Max value composition, MVC) 方法对月度植被净初生产力求取最大值输出月度NPP产品。
吴俊君, 仲波
本数据集包括祁连山区域2020年1月-12月月度最大值合成的30m空间分辨率地表植被指数产品。利用 Landsat8 OLI 和sentinel 2多光谱遥感影像的红光和近红外两个通道的反射率数据,计算NDVI实现对地表月度NDVI产品的合成。最后,采用最大值合成 (Max value composition, MVC) 方法对月度植被指数求取最大值输出月度NDVI分幅产品,数据集共计25.7GB。
吴俊君, 仲波
本数据集包括祁连山区域2020年1月-12月月度最大值合成的30m空间分辨率地表叶面积指数产品。利用 Landsat8 OLI 和sentinel 2多光谱遥感影像的红光和近红外两个通道的反射率数据,计算NDVI实现对地表月度NDVI产品的合成,进而利用经验模型计算LAI。最后,采用最大值合成 (Max value composition, MVC) 方法对月度叶面积指数求取最大值输出月度LAI产品,
吴俊君, 仲波
本数据集包括祁连山区域2020年1月-12月月度最大值合成的30m空间分辨率地表植被覆盖度产品。利用 Landsat8 OLI 和sentinel 2多光谱遥感影像的红光和近红外两个通道的反射率数据,计算NDVI实现对地表月度NDVI产品的合成,进而利用像元二分法计算FVC。最后,采用最大值合成 (Max value composition, MVC) 方法对月度植被覆盖度求取最大值输出月度FVC产品,
吴俊君, 仲波
青海省湖泊储水总量实测和模拟数据集中包含四个子表:第一个子表是根据遥感影像数据监测得到2000年至2019年的时序湖泊面积数据;第二个子表是结合时序湖泊面积数据和面积-库容方程进行估算的结果;第三个子表存储基于湖泊水下三维模拟模型模拟得到湖泊的面积-容积方程;第四个子表为青海省24个典型湖泊储水量实测和模拟关键参数与结果数据,其中包含每个湖泊的模拟水深、最大水深、模拟时的参考水位与对应的湖泊面积。
方纯, 卢善龙, 鞠建廷, 唐海龙
SSTG数据集是2002-2019年的全球海面温度数据,以摄氏度为单位,时间分辨率为月,空间分辨率为0.041°。 数据集是由2种红外辐射计(MODIS,AVHRR)及3种被动微波辐射计(AMSR-E,AMSR2,Windsat)得到的逐日海面温度卫星反演数据和逐日海面温度观测数据相结合,通过一个温度深度和观测时间校正模型校正后产生的。精度评价表明,重建后的数据集有明显改进,可以用于海洋中尺度现象分析。
毛克彪
结合MODIS积雪产品Terra/Aqua(500 m)与IMS(4 km),发展了青藏高原每日无云高分辨率积雪产品 (TAI, 500 m)。其相对于原始的MODIS Terra(云覆盖46.6%)和Aqua(55.1%)、及MODIS Terra-Aqua结合(37.3%),将云遮蔽全部去除。同时,提高了积雪成图,新生成的TAI产品的积雪面积为19.1%,相对于原始的MODIS Terra/Aqua及MODIS Terra-Aqua结合(积雪面积4.7%~8.1%),显示了大大的提高。与青藏高原105个站点雪深数据验证表明,TAI产品的总精度为94%,相对于MODIS Terra(55%)、MODIS Aqua(50%)、及MODIS Terra-Aqua结合(64%),都显示了较大的提高,特别是雪深大于4 cm时效果较好。
张国庆
本数据采用Chen et al. 2017 JHM研究的方法,利用MYD11C3.006和MOD11C3.006两种产品计算得到全天空的地表温度结果,具体计算程序见本数据集的Global_monthly_LST.m。数据格式为*.mat, Global_monthly_LST.m程序给出了实例如何读取该数据。该数据空间分辨率为0.05度,网格中心的经纬度信息分别保存在latitude.mat和Lonitud.mat,由于内陆湖泊、水体的发射率反演的问题,本数据将所有内陆湖泊和水体的地表温度给了NaN值,具体采用的mask见mask.mat文件。经过与全球156个站点观测的LST的验证,总体RMSE为2.69k,mean bias为0.4K,在干旱和半干旱地区的RMSE为2.62K, mean bias为0.94.K.
陈学龙, Bob Su, 马耀明
基于环境敏感区指数(ESAI)方法,计算获得2019年伊朗高原栅格荒漠化风险数据。ESAI方法考虑土壤,植被,气候和管理质量,是监测荒漠化风险最广泛的方法之一。根据ESAI指标框架,选择了14个指标计算四个质量领域,每个质量指数均由几个指标参数计算获得。参考前人研究,确定每个参数分类及其阀值。然后,根据每个类别在荒漠化的敏感性中的重要性以及与荒漠化过程的开始或不可逆转的退化关系,把每个类别分配了1(最低敏感度)和2(最高敏感度)之间的敏感性得分。关于如何选取指标以及与荒漠化风险和得分相关性,在Kosmas的研究中提供了更全面的描述。主要指标数据集来源于联合国粮农组织的世界土壤数据,欧空局的土地覆盖数据和AVHRR数据。所有栅格数据集重采样到500m并合成年度值。尽管验证综合评估指数存在困难,但根据ESAI值的时空比较,对荒漠化风险进行了间接验证,包括对ESAI与稀疏植被和草地转变关系的定量分析和分析ESAI与植被净初级生产力之间的关系。验证结果表明伊朗高原的荒漠化风险数据精度可靠。
许文强
拉萨市设施农地数据是基于2018年Google Earth影像解译,空间分辨率为0.52米。拉萨市温室大棚多为规则矩形,且反射率高,便于识别。直接采用目视解译判别各年年底温室图斑,解译过程中剔除了设施农业温室区内面积大于0.10公顷的露天地和宽度大于7米的道路,以及黑色纺织物覆盖的设施养殖大棚;未剔除设施农地间小块空地和田埂。样线验证解译准确率为98%。该数据较好反映了拉萨市设施农地空间格局特征。
王兆锋, 宫殿清
利用长时间序列Landsat遥感数据(1976年的KH-9数据为辅助数据),人工目视解译获取了念青唐古拉山西段近40年(1970s-2018)共5期冰湖数据,对大于0.0036平方千米的冰湖从类型、规模、海拔、流域4个方面的变化特征进行了详细分析。研究发现,念青唐古拉山西段冰湖持续扩张,数量从1976年的192个增加到2018年的299个,增加了107个(+56%),相应地总面积由原来的6.75±0.13平方千米扩张到9.12±0.13平方千米,增加了2.37平方千米 (+35%);冰湖的类型正发生明显的变化;较小规模的冰湖变化较快;冰湖的扩张正向更高海拔发展。
罗玮, 张国庆
本数据集是2009年欧亚大陆草地遥感三级分类图,数据为tif栅格格式,空间分辨率为1公里,三级草地分类为:温性草甸草原、温性典型草原、温性荒漠化草原、温性草原化荒漠、温性荒漠几个类型。 该数据是根据欧空局全球陆地覆盖数据(ESA GlobCover)2009产品GlobCover 2009 land cover map,结合ECMWF网站历史气象数据(降水量,年积温,湿润系数,蒸发量)及DEM数据等加工而成。该数据可为欧亚大陆温性草地分布信息以及时空变异分析提供依据。
唐家奎
西亚地区荒漠化专题数据主要包括:西亚地区沙化土地分布图和西亚地区退化草地分布图,空间分辨率为30m。西亚地区沙化土地分布图包含的土地类型有沙地、盐碱地、裸土地和裸岩石砾地,西亚地区退化草地分布图将草地划分为高覆盖草地、中覆盖草地和低覆盖草地三类。数据由中国科学院新疆生态与地理研究所遥感与GIS重点实验室生产,生产费用由“中国科学院战略性先导科技专项XDA20030101资助”,数据空间分辨率为30m。数据主要是基于2015年TM、ETM遥感影像数据,基于去云、镶嵌与裁剪、拼接、阴影处理等预处理,借助eCognition软件进行面向对象的地类分类,实现软件自动分类和人工信息提取相结合,最后对分类结果进行人工检查与修正。数据验证方式为野外实地验证和高精度影像验证两种方式,验证精度达到85%以上。
本数据集是欧亚大陆温性草地类型时空变异图—中国内蒙古区域三级分类(2009年),数据为tif栅格格式,空间分辨率为1公里,三级草地分类为:温性草甸草原、温性典型草原、温性荒漠化草原、温性草原化荒漠、温性荒漠几个类型。该数据是在已有内蒙古草原的草类型图基础上加工而成。内蒙古草原的草类型图是依据野外调查资料,以内蒙旗县为单位,根据草原类型分类系统,在预判基础上,叠加野外样地资料、遥感影像等信息数据,参考当地历史草原调查数据及相关资料,野外调绘修正而成。 我们选择2000-2009历史气象数据,结合卫星数据进一步分析修正,并进行空间插值计算。得出内蒙区域温性草地三级分类。该数据可用于欧亚大陆温性草地分布信息以及时空变异分析提供依据。
唐家奎
利用长时间序列Landsat遥感数据,获取了整个青藏高原近50年(1970s~2021)共15期湖泊观测数据,对大于1平方公里湖泊的数量及面积变化进行了详细分析。研究发现青藏高原湖泊数量从1970年代的1080个增加到2021年的~1400个。相应地,湖泊面积从1970年代的4万平方公里增加到了2021年的5万平方公里,净增加了1万平方公里。青藏高原湖泊并非持续单调地增加。在1970s至1995年间,大部分湖泊呈现萎缩状态;但在1995年之后,除2015年外,青藏高原湖泊的数量和面积总体呈现出持续增加趋势。流域尺度上,除雅鲁藏布流域外,均在扩张。
张国庆
结合Landsat影像(4215景)、地形图,利用半自动水体提取及人工目视检查编辑,完成了过去60多年来(1960s, 1970s, 1990, 1995, 2000, 2005, 2010, 2015, 2020)详细的中国湖泊(大于1平方公里)数量与面积变化研究。从1960s到2020年,中国湖泊总数量(≥ 1 km^2)从2127个增加到2621个,面积从68537 km^2扩张到82302 km^2 。
张国庆
生态承载力是指在不损害生态系统生产能力与功能完整性的前提下,生态系统可持续承载具有一定社会经济发展水平的最大人口规模,单位为人/平方公里。生态承载力空间分布数据基于VPM模型模拟的NPP数据和FAO农业、林业和畜牧业生产与贸易数据计算得到;以NPP数据为基础结合CCI-CI土地利用数据与各类生态系统地上地下生物量配比参数得到ANPP数据,作为生态供给量;以农林牧生产与贸易数据为基础结合人口数据得到“一带一路”沿线国家人均生态消耗标准,然后将国家尺度数据空间栅格化;将空间栅格化的生态供给量数据与人均生态消耗标准相除得到空间栅格化的生态承载数据。
闫慧敏
本数据集根据最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长序列(1981-2013)均一化植被指数产品,版本号3g,先将NDVI数据产品从1/12度空间分辨率重采样到0.5度,然后对每年的时间序列采用double-logistic方法进行平滑,并计算平滑后的曲率,选取春季曲率最大值作为植被的春季返青期,该数据可分析泛北极植被春季物候的时空特征。
徐希燕
本数据集为2018年祁连山重点区域土地覆盖/利用数据,空间分辨率2m。本数据集以祁连山地区的气候、海拔、地形地貌、地表覆盖类型等资料为基础,通过高分辨率遥感影像,对地表覆被类型进行解译判读。对影像无法反映的地类,实地核实地类,采集相关数据,核对并修正土地利用类型。同时进一步核对2018年祁连山重点区域土地覆盖/利用类型及植被覆盖情况等属性信息,统一进行图斑及其属性的录入和编辑,形成2018年祁连山地区土地覆盖/利用数据,实现祁连山地区生态治理的现势性和时效性。
祁元, 张金龙, 颜长珍, 段翰晨, 贾永娟
湖泊的形成与消失、扩张与收缩对生态环境演化和社会经济发展都有重要影响。由于受气候、生态环境和人类活动等因素的综合影响,湖泊水域范围的变化速度快、幅度大,对观测的频率和分布都有很高的要求。近几十年以来,卫星遥感技术以其快速、覆盖面广、成本低廉等优点,为较大区域的湖泊动态监测提供了重要数据基础。针对大范围、高精度、长时间序列的湖泊变化分析对遥感数据时空分辨率的需求,本数据集基于 Landsat 卫星数据的自动湖泊提取方法(Feng et al., 2015),利用 2000 年以来的 Landsat 多颗卫星的观测数据,收集了2000 年以来的云量小于 80%的所有Landsat 数据,获得共 96278 景影像(约 25T 数据量),结合高性能数据存储和处理能力,提取了青藏高原和中亚地区 2000-2015 年湖泊分布记录,形成了时空一致的逐月水域范围数据集。利用分层随机采样采集样点,通过人工解译,获取能够代表不同时空分布的验证样点。评价结果表明:研究区时间序列水体数据总体精度为 99.45%(±0.59),水体用户精度(错分)为 85.37% (±3.74),制图精度(漏分)为 98.17%(±1.05)。
冯敏, 车向红
本数据集是2014年青藏高原地区的土地覆被数据,数据为栅格TIFF格式,空间分辨率为300米,包含耕地、林地、草地、水体、城市用地等22个大类,可用于青藏高原城镇化与生态环境交互胁迫的地理本底研究。该数据来自欧空局CCI-LC项目生产的土地覆被数据产品。该数据集采用了WGS84的地理坐标系统,有22个大类。数据的生产融合多种卫星数据资料,包括MERIS FR/RR,AVHRR,SPOT-VGT,PROBA-V等。经验证,该数据集的总体精度在70%以上,当然精度会在不同的地区和覆被类型上存在差异。
杜云艳
本数据集是2010年青藏高原地区的土地覆被数据,数据为栅格TIFF格式,空间分辨率为300米,包含耕地、林地、草地、水体、城市用地等22个大类,可用于青藏高原城镇化与生态环境交互胁迫的地理本底研究。该数据来自欧空局CCI-LC项目生产的土地覆被数据产品。该数据集采用了WGS84的地理坐标系统,有22个大类。数据的生产融合多种卫星数据资料,包括MERIS FR/RR,AVHRR,SPOT-VGT,PROBA-V等。经验证,该数据集的总体精度在70%以上,当然精度会在不同的地区和覆被类型上存在差异。
杜云艳
该数据集主要是第四版本由 CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。插值算法来自于Reuter et al.(2007). SRTM的数据组织方式为:每5度经纬度方格划分一个文件,共分为24行(-60至60度)和72列(-180至180度),数据分辨率90米。 数据使用: SRTM的数据是用16位的数值表示高程数值的(-/+/32767米),最大的正高程9000米,负高程(海平面以下12000米),空值用-32767来表示。
Food and Agriculture Organization of the United Nations(FAO)
中亚地区荒漠化(土地沙化、盐渍化和植被退化)专题数据主要包括:中亚地区沙化土地分布图、中亚地区盐渍化土地分布图和中亚地区土地植被退化分布图,空间分辨率为1km,时间分辨率为年。中亚地区盐渍化土地分布图将盐渍化土地分为了轻度、中度、重度和极重度盐渍化土地四类。中亚地区土地植被退化分布图将植被退化状况分为了显著改善、轻微改善、稳定或无植被、轻微退化和显著退化五类。数据由中国科学院新疆生态与地理研究所遥感与GIS重点实验室生产,生产费用由“中国科学院战略性先导科技专项XDA20030101资助”。
许文强
数据包含青藏高原地区的土壤有机质数据,空间分辨率为1km*1km,时间覆盖范围为1979-1985年。数据来源是基于第二次土壤普查数据生成的土壤碳含量。土壤有机质主要来源于植物、动物及微生物残体,其中高等植物为主要来源。原始土壤中最早出现在母质中的有机体是微生物。随着生物的进化和成土过程的发展,动物、植物残体及其分泌物就成为土壤有机质的基本来源。数据对于分析青藏高原的生态环境以及衡量区域土壤特征具有重要意义。
方华军
包括塔里木河的降水、蒸发、水储量变化以及土壤水变化逐月数据,降水数据来源于ECMWF,蒸发数据通过基于彭曼公式的能量模型计算,水储量数据通过GRACE重力卫星数据反演得到,GLDAS数据通过美国NOAH的陆面过程模式模拟得到,NDVI数据来自MODIS数据产品。降水和蒸发分辨率为0.5°*0.5°,水储量和土壤水变化数据分辨率为1°*1°。数据为水资源管理和决策提供参考依据。植被数据可为生态变化评估提供基础数据。
许民
中亚地区2017年输沙势数据集,为tif格式。其空间范围涵盖里海在内的中亚五国地区,包括乌兹别克斯坦、哈萨克斯坦、土库曼斯坦、塔吉克斯坦和吉尔吉斯坦。此输沙势为绝对输势,即各个方向的输沙通量的综合,不考虑输沙势的方向。该数据由GLDAS全球三小时同化数据提取计算获得。时间分辨率为月,空间分辨率为0.25°,时间范围为2017年。该数据可以作为沙尘传输模型的重要参数输入,也可用于评估中亚五国沙通量的总体分布情况。该数据集可作为风沙灾害评估的重要参考数据。
高鑫
SRTM的传感器有两个波段,分别是C波段和X波段,我们现在使用的SRTM都自于C波段。公开发布的SRTM数字高程产品包括三种不同分辨率的DEM 数据: * SRTM1 覆盖范围仅仅包括美国大陆,其空间分辨率为1s ; * SRTM3 数据覆盖全球, 空间分辨率为3s,这是目前使用最为广泛的数据集,SRTM3的高程基准是EGM96的大地水准面,平面基准是WGS84;标称绝对高程精度是±16m,绝对平面精度是±20m。 * SRTM30 数据同样覆盖全球 ,分辨率是30s. SRTM数据存在多个版本,早期的SRTM数据由NASA“喷气推进实验室”(JPL ,Jet Propulsion Laboratory)地面数据处理系统( GDPS)来完成的,数据被称为SRTM3-1。美国国家地理空间情报局对数据做了更进一步的处理,缺少情况得到明显改进,数据称为SRTM3-2。 该数据集主要是第四版本由 CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。插值算法来自于Reuter et al.(2007) SRTM的数据组织方式为:每5度经纬度方格划分一个文件,共分为24行(-60至60度)和72列(-180至180度)。文件命名规则为srtm_XX_YY.zip,XX表示列数(01-72),YY表示行数(01-24)。 数据分辨率90米 数据使用:SRTM的数据是用16位的数值表示高程数值的(-/+/32767米),最大的正高程9000米,负高程(海平面以下12000米)。空数据用-32767标准
CGIAR-CSI
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件