青藏高原作为强大的热源,影响到亚洲季风的爆发与进退,西风带和季风带的相互作用。为了研究高原热力作用的变化及其对周边地区气候的影响,需要高原热源相关的基础数据。 本数据集由再分析资料计算得到得青藏高原及其周边地区逐月热源基础数据构成,变量包括青藏高原及周边地区大气热源、潜热通量、感热通量等,其水平范围覆盖为40°E-180°,20°S-80°N。空间分辨率为2.5°x2.5°,主要包括ERA5和NCEP/NCAR两种再分析资料数据。
李清泉
玛曲草地观测点始建于 2005 年,海拔 3434 米,位于距离玛曲县城以南约 18公里的河曲马场(102°08′45″E,33°51′50″N),下垫面为典型的发育良好的高寒草原,属于季节性冻土区。本数据集为2017-2020年黄河源区玛曲草地观测站点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
鄂陵湖是青藏高原最大的淡水湖泊,与邻近的扎陵湖一起构成了黄河源头的“姊妹湖”,并入选了国际重要湿地名录,也是三江源国家公园的核心区。本数据集为中国科学院若尔盖高原湿地生态系统研究站2017-2020年黄河源区鄂陵湖草地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度(2020年为比湿)、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
数据为青藏高原地区FY-4A地面太阳辐射产品,包括GHI\DNI\DIF.FY4地表太阳入射辐射反演算法涉及的通道包括成像仪可见光、近红外和短波红外的6个通道:CH1(0.45-0.49微米)、CH2(0.55-0.75微米)、CH3(0.75-0.90微米)、CH4(1.36-1.39微米)、CH5(1.58-1.64微米)、CH6(2.1-2.35微米)。算法依赖的回归模型需要事先通过辐射传输模拟和统计分析建立,回归模型定义了地表太阳入射辐射与成像仪多通道辐射观测之间的回归关系式,是太阳观测几何与最重要影响参数(云、气溶胶、水汽含量、地表反照率、地表海拔高度等)的函数。算法利用FY-4卫星成像仪通道1至通道6的短波辐射观测,来获取大气和地表的瞬时状态参数信息,同时由地表高程数据获取地表海拔高度信息。在确定瞬时的大气和地表状态后,结合太阳角度和观测角度,根据事先建立的回归模型数据,进行多维线性插值,获取地表太阳入射辐射反演产品。
申彦波, 胡玥明, 胡丽琴
1) 青藏高原地面气象驱动数据集(2019-2020),包括地表温度(Land surface temperature)、地表降水率(Mean total precipitation rate)、下行短波辐射(Mean surface downward long-wave radiation flux)以及下行长波辐射(Mean surface downward short-wave radiation flux)4个气象要素。 2) 该数据集以ERA5再分析数据为基础,辅以MODIS NDVI、MODIS DEM、FY3D MWRI DEM数据产品。通过多元线性回归方法对ERA5再分析数据进行降尺度处理,最后通过重采样生成。 3) 青藏高原地面气象驱动数据集(2019-2020)各数据要素均以TIFF格式存储,时间分辨率包括(每日、每月、每年),空间分辨率统一为0.1°×0.1°。 4) 本数据方便不会使用.nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 杜宝隆
地表太阳入射辐射(Surface Solar Irradiance,SSI)是FY-4A L2定量反演产品之一,覆盖范围为全圆盘,无投影,空间分辨率为4km,时间分辨率可达15min(20180921开始全天共40个观测时次,除每个整点时次的观测外,每3hr整点前后15min各有一次观测),光谱范围为0.2µm~5.0µm。产品输出要素包括总辐照度、水平面直接辐照度、散射辐照度,有效测量范围为0~1500 W/m2。FY-4A SSI产品在覆盖范围、空间分辨率、时间连续性、输出要素等方面质的提升为进一步开展其在太阳能、农业、生态、交通等专业气象服务中的精细化应用提供了可能。目前研究结果表明,与地基观测相比,FY-4A SSI 产品在中国地区的整体相关性在0.75以上,可用于中国地区太阳能资源评估。
申彦波, 胡玥明, 胡秀琴
陆地实际蒸散发(ETa)是陆地生态系统的重要组成部分,它连接着水文、能量和碳循环。然而,准确监测和理解青藏高原(TP)实际蒸散发(ETa)的时空变化仍然非常困难。在此,利用MOD16-STM模型,在土壤属性、气象条件和遥感数据集的支持下,对青藏高原多年(2000-2018年)月度ETa进行了估算。估算出的ETa与9个通量塔的测量结果相关性非常好,均方根误差(平均RMSE=13.48 mm/月)和平均偏差(平均MB=2.85 mm/月)较低,相关系数(R=0.88)和一致性指数(IOA=0.92)较高。2000年至2018年,整个TP和东部TP(Lon>90°E)的空间平均ETa显著增加,增速分别为1.34 mm/年(P<0.05)和2.84 mm/年(P<0.05),而西部TP(Lon<90°E)未发现明显趋势。ETa及其组分的空间分布不均匀,从东南向西北TP递减。东部ETa呈显著上升趋势,西南部ETa全年呈显著下降趋势,尤其是冬春两季。土壤蒸发(Es)占总ETa的84%以上,其时间趋势的空间分布与年平均ETa相似。春季和夏季的ETa变化幅度和速率最大。陆表ETa的多年平均年值(面积2444.18×10^3 km2)为376.91±13.13 mm/年,相当于976.52±35.7 km3/年。整个TP(包括所有高原湖泊,面积2539.49×10^3 km2)的年平均蒸发水量约为1028.22±37.8 km3/年。新的ETa数据集有助于研究土地覆被变化对水文的影响,有助于对整个TP的水资源管理。
马耀明, 陈学龙, 袁令
本数据集包含2001-2018年青藏高原月平均地表实际蒸散发量,空间分辨率为0.1度。数据集主要以卫星遥感数据(MODIS)和再分析气象数据(CMFD)作为输入,利用地表能量平衡系统模型(SEBS)计算得到。在计算湍流通量的过程中引入了次网格地形拖曳参数化方案,提高了对地表感热通量和潜热通量的模拟。另外,利用青藏高原6个湍流通量站的观测数据对模型输出的蒸散发量进行了验证,显示出了较高的精度。该数据集可用于研究青藏高原陆气相互作用和水循环特征。
韩存博, 马耀明, 王宾宾, 仲雷, 马伟强, 陈学龙, 苏中波
1)数据内容(包含的要素及意义):高寒网21个站(藏东南站、纳木错站、珠峰站、慕士塔格站、阿里站、那曲站、双湖站、格尔木站、天山站、祁连山站、若尔盖站(西北院)、玉龙雪山站、那曲站(寒旱所)、海北站、三江源站、申扎站、贡嘎山站、若尔盖站(成都生物所)、那曲站(地理所)、拉萨站、青海湖站)2018年青藏高原气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和蒸发) 2)数据来源及加工方法:高寒网21个站实地观测Excel格式 3)数据质量描述:站点日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 彭萍
(1)本数据集是申扎高寒湿地2016-2019年的碳通量数据集,包含空气温度、土壤温度、降水、生态系统生产力等参数。(2)该数据集以野外涡度相关实测数据为基础,采用国际上公认的涡度相关数据标准处理方法,基本流程包括:野点剔除-坐标旋转-WPL校正-储存项计算-降水同期数据剔除-阈值剔除-异常值剔除-u*校正-缺失数据插值-通量分解与统计。本数据集还包含了基于涡度相关数据集标定后的模型模拟数据。(3)该数据集已经过数据质量控制,数据缺失率为37.3%,缺失数据已采用插值方式补充。(4)该数据集对认识高寒湿地碳汇功能具有科学价值,也可以用于机理模型的矫正和验证等。
魏达
基于WRF模式,以ERA5再分析资料为初始和边界场,通过动力降尺度的方法,初步获得了青藏高原高分辨率低层大气结构和地气交换数据集。该数据集时间范围为2014年8月1日-8月31日,时间分辨率1小时,水平范围25oN-40oN,70oE-105oE,水平分辨率为0.05°。数据格式为NetCDF,每一小时数据输出一个文件,文件以日期命名。低层大气结构数据包含温度、相对湿度、水汽混合比、位势高度、经向风、纬向风气象要素,垂直方向为34层等压面;地气交换数据集包含地表接收的向上/向下短波辐射、向上/向下长波辐射、地表感热和通量、2米气温和水汽混合比、10米风等。该数据集可对青藏高原天气过程和气候环境研究提供数据支撑。
马舒坡
该数据集是从中国科学院青藏高原研究所开发的一套中国区域近地面气象与环境要素再分析数据集中提取得到。该数据集是以国际上现有的 Princeton 再分析资料、GLDAS 资料、GEWEX-SRB 辐射资料,以及 TRMM 降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。其时间分辨率为 3 小时,水平空间分辨率 0.1°,包含近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率,共 7 个要素(变量)。 各变量的物理意义: 气象要素 变量名 单位 物理意义 近地面气温 temp K 瞬时近地面(2m)气温 地表气压 pres Pa 瞬时地表气压 近地面空气比湿 shum kg/ kg 瞬时近地面空气比湿 近地面全风速 wind m /s 瞬时近地面(风速仪高度)全风速 向下短波辐射 srad W /平方米 3 小时平均 (-1.5hr ~ +1.5hr) 向下短波辐射 向下长波辐射 lrad W /平方米 3 小时平均 (-1.5hr ~ +1.5hr) 向下长波辐射。 降水率 prec mm/hr 3 小时平均 (-3.0hr ~ 0.0hr) 降水率。 更多信息,请参见随数据一同发布的《User’s Guide for China Meteorological Forcing Dataset》。
阳坤
青藏高原作为地球的第三极,春夏季作为热源对区域和全球的天气和气候有着重要的影响。为了探究高原多时间尺度热力强迫作用的时空变化特征,建立一套持续、可靠的长时间观测的观测数据为基础的高原热源(汇)数据是十分有必要的。利用中国气象局在青藏高原上80(32)个观测台站1979—2016(1960—2016)年的气象要素(地表温度、地表气温、10m 风速、 日累计降水量等)为基础计算得到感热(SH)和潜热(LH),同时利用卫星资料处理得到高原上1984—2015年的净辐射通量(RC),得到了一套通过质量控制的长期高原热源数据集。本数据集在计算地表感热通量时,考虑了总体热传输系数 的日变化特征。
胡文婷
青藏高原(TP)在春季和夏季作为一个巨大的高架式地表和大气热源,对区域和全球气候和气候具有重要影响。为了探讨TP的热强迫效应的多尺度时间变化,制备了青藏高原大气热源/汇数据集,作为计算气柱热收支的定量分析工具。 大气热源/汇数据集包含三个变量:地表感热通量SH、潜热释放LH和净辐射通量NR。 基于中国气象局(CMA)1979-2016年80(32)气象站6-h的常规观测数据:1.5m气温、10m地面温度和风速计算地表热通量数据,降水估算潜热释放量。用于计算净辐射通量的卫星数据集为全球能源和水循环实验地表辐射预算卫星辐射(GEWEX/SRB)和云和地球的辐射能系统(CERES/EBAF),利用GEWEX/SRB和CERES/EBAF大气表面和顶部(TOA)的短波和长波月辐射通量(short - twave and longwave radiation fluxes, TOA),通过统计方法得到1984-2015年期间的净辐射通量。
段安民
采用WRF模式制备的青藏高原近地表大气驱动和地表状态数据集,时间范围:2000-2010,空间范围:25-40 ºN,75-105 ºE,时间分辨率:逐时,空间分辨率:10 km,格点数为150*300。 总计有33个变量,其中包含的近地表大气变量11个: 地面上2m高度的温度、 地面上2m高度的比湿、地面气压、地面上10m风场的纬向分量、地面上10m风场的经向分量、固体降水比例、累积的积云对流降水、累积的格点降水、地表处的向下短波辐射通量、地表处的向下长波辐射通量、累计的潜在蒸发。 包含的地表状态变量有19个:各层土壤温度、各层土壤湿度、 各层土壤液态水含量、雪相态改变的热通量、土壤底部温度、地表径流、地下径流、植被比例、地面热通量、雪水当量、实际雪厚、雪密度、冠层中的水、地表温度、反照率、背景反照率、更低边界处的土壤温度、地表面处向上的热量通量(感热通量)、地表面处向上的水量通量(感热通量)。 其他变量3个:经度、纬度和行星边界层高度。
潘小多
光合有效辐射吸收系数光合有效辐射分量是重要的生物物理参数,是生态系统功能模型、作物生长模型、净初级生产力模型、大气模型、生物地球化学模型、生态模型等的重要陆地特征参量,是估算植被生物量的理想参数。 数据集包含青藏高原地区的光合有效辐射吸收系数数据,空间分辨率为500m,时间分辨率为8d,时间覆盖范围为2000年、2005年、2010年、2015年。数据来源为NASA网站MODIS LAI/FPAR产品数据MOD15A2H(C6)。 数据对于分析青藏高原的植被生态环境有重要意义。
方华军, Ranga Myneni
本数据集来自中国科学院西北生态环境资源研究院那曲高寒气候环境观测研究站那曲观测场(31.37ºN,91.90º E,海拔高度4509m),观测场地平坦开阔,不均匀的生长着高度为3-20cm的植被。本数据集观测时间为2014年1月1日至2017年12月31日,观测要素主要包括风速、气温、空气相对湿度、气压、向下短波辐射、降水量、蒸发、潜热通量和CO2通量。其中降水量、蒸发和CO2通量数据为日累积值,其他观测要素为日平均值。观测数据总体上连续性较好,但由于供电故障导致部分数据缺测,数据中的缺测值标记为NAN。
胡泽勇, 谷良雷, 孙方林, 王树金
1、数据内容:气温、相对湿度、降水、气压、风速、平均总辐射、总净辐射值及水汽压日平均数据。 2、数据来源及加工方法:由美国campel高山型自动气象站观测,其中空气温湿度传感器型号HMP155A;风速风向仪型号:05103-45;净辐射仪:CNR 4 Net Radiometer four component;大气压力传感器:CS106;雨量筒:TE525MM。自动气象站每隔10分钟自动采集一次数据,每日采集完自动统计计算得出日均值气象数据。 3、数据质量描述:数据自动连续获取。 4、数据应用成果及前景:该气象站设置在冰川中部,气象数据可为模拟预测未来气候变化背景下海洋型冰川变化对全球气候变化的响应研究提供了数据保证。
刘婧
数据集综合了纳木错多圈层综合观测研究站、珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站的大气、水文和土壤的长期监测数据。数据有三种分辨率,包括0.1秒、10分钟、30分钟、24小时不等。 野外的大气边界层塔(PBL)所使用的温湿度和气压传感器由芬兰的Vaisala公司生产,风速风向传感器由美国的MetOne公司生产,辐射传感器由美国的APPLEY公司和日本的EKO公司生产,气体分析仪由美国的Licor公司生产,土壤含水量、超声风速仪和数据采集器等由美国的CAMPBELL公司生产。定期(每年2-3次)由专业人员对观测系统进行维护,对传感器进行标定和更换,对采集的数据进行下载和整编,满足国家气象局和世界气象组织(WMO)的气象观测规范。 数据集加工方法为原始数据经过质量控制后形成时间连续序列,质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。
马耀明
青藏高原东缘贡嘎山森林生态系统试验站观测的气象、土壤、植被等数据,时间主要是从2005-2008年。 气象数据:气温、气压、相对湿度、露点温度、水气压、地温、土壤温度(5cm、10cm、20cm、40cm)、10分钟平均风、10分钟最大风速、降水、总辐射、净辐射 乔木层生物观测数据:胸径、树高、生活型 灌木层生物观测数据:株数、高度、盖度、生活型、地上生物量、地下生物量 草本层生物观测数据:株(丛)数、平均高度、盖度、生活型、地上生物量、地下生物量 叶面积指数:乔木层叶面积指数、灌木层叶面积指数、草木层叶面积指数 土壤有机质及养分:土壤有机质、全氮、全磷、全钾、硝态氮、铵态氮、速效氮(碱解氮)、有效磷、速效钾、缓效钾、水溶液提pH值 土壤含水量:深度、含水量
王小丹
数据集综合了藏北高原大气、水文和土壤的多站点长期监测项目,包含了藏北高原青藏公路/铁路沿线9个站点(D66,NewD66,沱沱河,D105,D110,安多,MS3478/NPAM,那曲布交,MS3608)多层或单层大气基本要素(风、温、湿、压和降雨/雪等),地面辐射各分量及多层土壤温、湿和热流等观测资料。 数据集通过架设在野外的自动气象站(AWS)、大气边界层塔(PBL)所获得的监测数据组成。所使用的温湿度和气压传感器由芬兰的Vaisala公司生产;风速风向传感器由美国的MetOne公司生产;辐射传感器由美国的APPLEY公司和日本的EKO公司生产;气体分析仪由美国的Licor公司生产;土壤含水量、超声风速仪和数据采集器等由美国的CAMPBELL公司生产。定期(每年2-3次)由专业人员对观测系统进行维护,对传感器进行标定和更换,对采集的数据进行下载和整编。 数据集加工方法为原始数据经过质量控制后形成时间连续序列。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。 数据包含如下观测指标: 空气温度,单位:℃,精度:0.05℃; 空气相对湿度,单位:%,精度:2%; 风速,单位:m/s,精度:0.1m/s; 气压,单位:hPa,精度:0.5hPa; 风向,单位:°,精度:4°; 降水,单位:mm,精度:0.05mm; 辐射,单位:W/m²,精度:5%; 土壤热流,单位:W/m²,精度:2%; 土壤温度,单位:℃,精度:0.2℃; 土壤体积含水量,单位:v/v%,精度:2%。
胡泽勇
本数据集主要包括藏东南高山环境综合观测研究站色季拉山高山林线观测场2005-2008年观测的气象数据和土壤水分数据。 藏东南山地林线观测数据集,包含:1)气象数据集 ;2)土壤水分数据。其中:气象数据集内容包括:风速、气温(1,3m)、相对湿度(1,3m)、土壤热通量(-5,-20,-60cm)、土壤温度(-5,-20,-60cm)、气压、总辐射、净辐射、光合有效辐射、红光辐射(660,730nm)、大气长波辐射、地面长波辐射、地表温度、降水量、雪厚;土壤水分数据包括:植被类型、土壤含水量(-5,-20,-60cm)。 各观测指标所使用的仪器情况: 气温:气温传感器( Air Temperature Probe),产自台湾,型号为TRH-S。 相对湿度:型号为TRH-S,产自台湾。 风速:风速仪(Anemoscope), 产自台湾,型号为03102。 气压:气压仪(Barometric Pressure sensor),产自台湾,型号为BP0611A。 大气长波辐射:大气长波辐射仪(pyrgeometer),产自荷Kipp & Zonen公司,型号为CG3。 地面长波辐射:地面长波辐射仪(pyrgeometer),产自荷兰Kipp & Zonen公司,型号为CG3。 总辐射:总辐射仪(Pyranometer),产自荷兰Kipp & Zonen公司,型号为CM3。 净辐射:净辐射仪(Net Radiometer), 产自荷兰Kipp & Zonen公司,型号为NR-Lite。 光合有效辐射:有效光合辐射仪(PAR-Sensor),产自产自荷兰Kipp & Zonen公司,型号为MS-PAR。 红外辐射:红外辐射仪(Infrared radiation sensor) ,产自英国Skye公司,型号为SKY110。 雨量:雨量筒(Rain Gauge), 产自台湾,型号为7852M。 雪厚:超声波雪厚仪(ultrasonic snow depth sensor),产自美国,型号为260-700。 土壤温度:土壤温度传感器(Soil temperature probe), 产自美国Onset公司,型号为12-Bit。 土壤热通量:土壤热通量板(Soil heat flux plate),产自荷兰Hukseflux公司,型号为HFP01。 土壤含水量:土壤水分传感器(Soil moisture sensor),产自美国Onset公司,型号为S-SMA-M003。 严格按照仪器操作规范进行观测和数据采集, 每项观测仪器在安装前都经过了供应商严格的调试并校正,从而确保了观测数据的准确性。在加工生成数据表时,剔除了一些明显误差数据。
刘新圣, 罗天祥
本数据集包含祁连山东段3个气象站点(西营水库[XYSCZ],护林站[XYHLZ]和上池沟[XYSCG])2006-2010年间的气象观测数据,要素包括气温、降水、相对湿度、风速、主风向、总辐射和气压,时间分辨率为:天。 原始数据严格按照仪器操作规范进行观测和数据采集,精度满足国家气象局和世界气象组织(WMO)对气象观测数据的要求,每年2-3次由专业人员对观测系统进行维护,对传感器进行标定和更换,对采集的数据进行下载和整编。该数据是原始数据经过质量控制后形成时间连续序列,剔除曳点数据和传感器出现故障造成一些明显的系统误差数据。
高红山
本数据集包含从2005年10月1日到2016年12月31日,纳木错台站观测的气温、气压、相对湿度、风速、降水、总辐射等日值。 数据集加工方法为原始数据经过质量控制后形成连续的时间序列。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,剔除了曳点数据和传感器出现故障造成的系统误差。 该数据的服务对象为从事大气物理、大气环境、气候、冰川、冻土等学科科学研究和人才培养的专业人员。主要应用于冰川学、气候学和环境变化、寒区水文过程以及冻土学等学科领域。 测量参数的单位和精度如下: 空气温度,单位:℃,精度:0.1℃; 空气相对湿度,单位:%,精度:0.1%; 风速,单位:m/s,精度:0.1m/s; 风向,单位:°,精度:0.1°; 气压,单位:hPa,精度:0.1hPa; 降水,单位:mm,精度:0.1mm; 总辐射,单位:W/m2,精度:0.1W/m2。
汪远伟, 邬光剑
本数据集包括2007年1月1日至2017年12月31日藏东南站,大气气温、相对湿度、降水、风速、风向、净辐射、气压等的日平均数据。 该数据服务对象为从事气象、大气环境、生态研究的学生和科研人员。 其中各种气象要素的单位如下:气温℃;降水mm;相对湿度%;风速m/s;风向°;净辐射W/m2;气压hPa;可入肺颗粒物μg/m3。 所有数据均是原始观测数据计算得到的日平均值。严格按照仪器操作规范进行观测和数据采集,并已经在相关学术期刊发表;加工过程中剔除了一些明显误差数据,缺失数据用空值。 2015年由于台站观测探头老化问题,风速数据只保留后8个月数据。
罗伦
本数据集包含从2003年5月18日到2016年12月31日,慕士塔格西风带环境综合观测研究站观测的气温、气压、相对湿度、风速、风向、降水、辐射、水汽压等日值。 数据来自于自动气象站(Vaisala公司),每30分钟记录一条数据,数据集加工方法为原始数据经过质量控制后形成连续的时间序列。 满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,剔除了曳点数据和传感器出现故障造成的系统误差。 主要应用于冰川学、气候学和环境变化、寒区水文过程以及冻土学等学科领域,服务对象为从事大气物理、大气环境、气候、冰川、冻土等学科科学研究和人才培养的专业人员。
汪远伟, 徐柏青
本数据集包含珠穆朗玛大气与环境综合观测研究站,2005-2016年观测的气温、气压、相对湿度、风速、降水、总辐射、P2.5浓度等日平均值。 数据服务对象为从事青藏高原气象研究的学生和科研人员。 其中降水数据是人工雨量桶观测,蒸发数据为Φ20mm蒸发皿观测,其它均为半小时的观测值处理后得到的日均值。 所有数据严格按照仪器操作规范进行观测和采集,在加工生成数据时,剔除了一些明显的误差数据。
马耀明
太阳分光光度计的测量数据可以直接用来反演非水汽通道的光学厚度、瑞利散射、气溶胶光学厚度、大气气柱的水汽含量(使用水汽通道936nm处的测量数据)。青藏高原气溶胶光学特性地基观测数据集采用Cimel 318太阳光度计连续观测获得,涉及珠峰站和纳木错站共两个站点。数据覆盖时间从2009年到2016年,时间分辨率为逐日。太阳光度计在可见光至近红外设有8个观测通道,中心波长分别为:340、380、440、500、670、870、940和1120 nm。仪器的视场角为1.2°,太阳跟踪精度为0.1°。根据太阳直接辐射可获得6个波段的气溶胶光学厚度,精度估计为0.01-0.02。最终采用AERONET统一反演算法,获得气溶胶光学厚度、Angstrom指数、粒度谱、单次散射反照率、相函数、复折射指数和不对称因子等。
丛志远
GAME/ Tibet 项目于1997 年夏季在安多(Amdo) 站作过短期预试验观测( PIOP) 。1998 年5~9 月, 安排了连续5 个加强观测期( IOP) , 每个IOP 约一个月。中、日、韩三国80 余名科学工作者分批赴青藏高原,进行了艰苦而卓有成效的工作。 各项观测试验计划顺利完成。并且从1998 年9 月加强观测结束后,5 个自动气象站(AWS) 、1 个自动气象综合观测站( PAM) 、1 个边界层塔及辐射综合观测站(Amdo) 及9 个土壤温度和湿度观测站一直连续观测至今, 取得了连续8 年零6 个月(从1997 年6 月开始) 极其珍贵的资料。 试验区设在藏北那曲地区的一个150 km ×200 km 的区域内(图1),同时在青藏公路沿线的D66,沱沱河和唐古拉山口(D105) 也建立了观测点。包括高原草甸、高原湖泊、荒漠化草原等不同下垫面上, 设置了以下观测站(点):(1) 两个包括大气和土壤的多学科综合观测站:安多(Amdo) 和那曲(NaquFx) 。这两个站含有多分量辐射观测系统、梯度观测塔、湍流通量直测系统、土壤温湿度梯度观测、无线电探空以及作为卫星资料地面真值利用的地面土壤湿度观测网和多角度光谱仪观测等;(2) 6 个自动气象站(D66 、沱沱河、D105 、D110 、Naqu 和MS3608) 。每个测站都有风、温、湿、压、辐射、地表温度、土壤温湿度和降水等观测;(3) 设在那曲北和南各约80 km 处的PAM( Portable Automated Meso - net) 站(MS3478和MS3637) 有类似于上述两个综合观测站(Amdo和NaquFx) 的主要项目, 同时有风、温、湿的湍流观测;(4) 9 个土壤温度和湿度观测点(D66 、沱沱河、D110 、WADD、NODA、Amdo 、MS3478、MS3478和MS3637) , 每个测站都包含有6 层土壤温度和9 层土壤湿度测量;(5) 一个设在那曲以南的三维多普勒雷达站和邻近(约100 km) 区域内的7 个加密雨量站( Precipitation gauge) , 辐射观测系统主要研究高原云与降水系统, 并作为TRMM 卫星一个地面真值站。 GAME-Tibet项目力求通过不同空间尺度的加强观测试验和长期监测,深入了解青藏高原的地气相互作用以及对亚洲季风系统的影响。 GAME/ Tibet 项目2000 年结束后, 已加入GEWEX(全球能量和水循环试验) 与CL IVAR (气候变化和预测) 两个大型国际计划联合组织的“全球协调加强观测计划(CEOP) ”, 开始执行“全球协调加强观测计划(CEOP) 亚澳季风之青藏高原试验研究”(CAMP/ Tibet ) 数据内容分为Prephase Observation Preriod (POP)1997年和IOP1998年 一、POP1997年数据内容: 1、Precipitation Guage Network (PGN) 2、Radiosonde Observation at Naqu 3、Analysis of Stable Isotope for Water Cycle Studies 4、Doppler radar observation 5、Large-Scale Hydrological Cycle in Tibet (Link to Numaguchi's home page) 6、Portable Automated Mesonet (PAM) [Japanese] 7、Ground Truth Data Collection(GTDC) for Satellite Remote Sensing 8、Tanggula AWS ( D105 station in Tibet ) 9、Syamboche AWS (GEN/GAME AWS in Nepal) 二、IOP1998年数据内容: 1、Anduo (1)PBL Tower 、(2)Radiation 、(3)Turbulence SMTMS 2、D66 (1)AWS (2)SMTMS (3)GTDC(4)Precipitation 3、Toutouhe (1)AWS(2)SMTMS(3)GTDC 4、D110 (1)AWS (2)SMTMS (3)GTDC(4)SMTMS 5、MS3608 (1)AWS (2)SMTMS (3)Precipitation 6、D105 (1)Precipitation (2)GTDC 7、MS3478(NPAM) (1)PAM (2)Precipitation 8、 MS3637 (1)PAM (2)SMTMS (3)Precipitation 9、NODAA (1)SMTMS (2)Precipitation 10、WADD (1)SMTMS (2)Precipitation (3)Barometricmd 11、AQB (1)Precipitation 12、Dienpa( RS2 ) (1)Precipitation 13、Zuri (1)Precipitation(2)Barometricmd 14、Juze (1)Precipitation 15、Naqu hydrological station (1)Precipitation 16、MSofNaqu(1)Barometricmd 16、Naquradarsite (1)Radarsystem(2)Precipitation 17、Syangboche[Nepal](1)AWS 18、Shiqu-anhe(1)AWS(2)GTDC 19、Seqin-Xiang(1)Barometricmd 20、NODA(1)Barometricmd(2)Precipitation(3)SMTMS 21、NaquHY(1)Barometricmd(2)Precipitation 22、NaquFx(BJ)(1)GTDC(2)PBLmd(3)Precipitation 23、MS3543(1)Precipitation 24、MNofAmdo(1)Barometricmd 25、Mardi(1)Runoff 26、Gaize(1)AWS(2)GTDC(3)Sonde
马耀明
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件