日照时数重建可以较好的反应地表太阳辐射的长期变化趋势,但只是站点数据。因此要得到高分辨率网格点数据,同时保证其在长期变化方面上的精度,需要融合多种地表太阳辐射相关数据。利用地理加权回归(GWR)方法,融合了MODIS 0.1°分辨率云量和气溶胶反演以及地面日照时数重建地表太阳辐射站点数据。通过增加相邻点数方案的组合判断,有效地提高了地理加权回归降尺度结果的准确性,得到的中国区域多年平均值、长期趋势与观测和卫星遥感反演结果基本一致。采用地理加权回归等方法,生成0.1度网格的地表风速和相对湿度数据;利用改进的彭曼公式计算了陆表蒸散数据。
王开存
本数据集是一个包含34年(1983.7-2017.6)的全国高分辨率地表太阳辐射数据集,其分辨率为10公里,数据单位为W/㎡。该数据集是基于以ISCCP-HXG云产品为主要输入的全球高分辨率(3小时,10公里)地表太阳辐射数据集(1983-2017)上,通过地理加权回归方式,融合全国2261个气象台站日照时数反演的地表太阳辐射站点数据而生成的全国地表太阳辐射分布数据。验证并和其他全球卫星辐射产品比较表明,该数据集在长期趋势模拟上比GEWEX-SRB、CMSAF-CLARA-A2、ISCCP-HXG卫星辐射产品的精度要高。本数据可为陆地表面过程模拟的水文生态学的长期变化应用和研究中提供有利的数据支持。
冯飞, 王开存
中国区域地面气象要素驱动数据集,包括近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率共7个要素。数据为NETCDF格式,时间分辨率为3小时,水平空间分辨率为0.1°。可为中国区陆面过程模拟提供驱动数据。 该数据集是以国际上现有的Princeton再分析资料、GLDAS资料、GEWEX-SRB辐射资料,以及TRMM降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。详细过程请参阅参考文献。原始资料来自于气象局观测数据、再分析资料和卫星遥感数据。已去除非物理范围的值,采用ANU-Spline统计插值。精度介于气象局观测数据和卫星遥感数据之间,好于国际上已有再分析数据的精度。
阳坤, 何杰, 唐文君, 卢麾, 秦军, 陈莹莹, 李新
该数据集共包含717个文件,其中station.txt文件主要描述716个站的站点信息,每列分别对应为:经度、纬度和高程;另外以站号命名的716个文件对应716个站的数据,文件中每列分别为:年、月、日和日平均太阳辐射。 该数据是基于中国气象局常规气象观测要素:温度、湿度、气压和日照时数等估算得到的。估算方法采用两个模型得到,分别为:人工神经网络模型和Yang混合模型。Yang混合模型在晴天情况下考虑了气溶胶散射和吸收、瑞利散射、水汽吸收、臭氧吸收和均一混合气体吸收五中衰减过程,云天情况下通过日照时数来参数化云对辐射的影响;而人工神经网络模型利用ANN模型在每个辐射站上建立了辐射和地面常规气象变量的关系。由于人工神经网络模型精度要比Yang混合模型估算精度高,因此通过人工神经网络模型估算值在月尺度上动态校正Yang混合模型估算值最终得到数据集合。
唐文君
该数据集包含2007-2014年地表太阳辐射数据,时间分辨率为逐小时,空间分辨率为5km。每个小时对应一个文件,文件命名方式为: RAD_yyyymmddhh.dat,其中yyyy表示年,mm表示月,dd表示日,hh表示小时(世界时)。经度(X轴)格点:70.025:0.05:140.025,纬度(Y轴)格点:59.975:-0.05:14.975。文件为二进制文件,格式为float格式(real*4),没有头文件。 该数据集的获取分为三步:(1)融合极轨卫星MODIS 和日本静止气象卫星MTSAT 资料,发展适合MTSAT的云检测算法及MTSAT云属性信息(有效粒子半径和路径含水量)的估算方法;(2)发展以云属性、气溶胶、水汽和臭氧等信息为输入的宽波段辐射模型,形成高效快速的地表太阳辐射反演技术;(3)将获取的高分辨率云参数信息和其他要素(气溶胶、水汽、臭氧等)输入宽波段辐射传输模型,最终得到中国高时空地表太阳辐射数据集。 经验证,瞬时辐射均方根误差(RMSE)一般小于 100 W/㎡,日平均辐射均方根误差(RMSE)一般小于 35 W/㎡。
唐文君
该数据集共包含717个文件,其中station.txt文件主要描述716个站的站点信息,每列分别对应为:经度、纬度和高程;另外以站号命名的716个文件对应716个站的数据,文件中每列分别为:年、月、日和日平均光合有效辐射。 该数据是基于中国气象局常规气象观测要素:温度、湿度、气压和日照时数等估算得到的。(1)算法和模型介绍:该模型发展了光合有效辐射(PAR)波段大气宽波段透过率参数化方案,在晴天情况下考虑了四种衰减过程,分别是:气溶胶的吸收和散射,水汽的吸收,臭氧的吸收和瑞利散射。在此基础上建立了晴空条件下地表PAR估算方案,同时利用日照时数作为衡量云对辐射影响的指标,参数化其对地表PAR的影响,进而估算全天空条件下地表PAR。经验证,估算结果数据集的均方根误差小于14W/m² 。
唐文君
中国区域地面气象要素数据集是中国科学院青藏高原研究所开发的一套近地面气象与环境要素再分析数据集。该数据集是以国际上现有的 Princeton 再分析资料、GLDAS 资料、GEWEX-SRB 辐射资料,以及 TRMM 降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。其时间分辨率为 3 小时,水平空间分辨率 0.1°,包含近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率,共 7 个要素(变量)。 各变量的物理意义: | 气象要素||变量名||单位||物理意义 | 近地面气温 ||temp|| K || 瞬时近地面(2m)气温 | 地表气压 || pres|| Pa || 瞬时地表气压 | 近地面空气比湿 || shum || kg/ kg ||瞬时近地面空气比湿 | 近地面全风速 || wind || m /s || 瞬时近地面(风速仪高度)全风速 | 向下短波辐射|| srad || W /平方米 || 3 小时平均 (-1.5hr ~ +1.5hr) 向下短波辐射 | 向下长波辐射||lrad ||W /平方米 ||3 小时平均 (-1.5hr ~ +1.5hr) 向下长波辐射 | 降水率||prec||mm/hr ||3 小时平均 (-3.0hr ~ 0.0hr) 降水率 更多信息,请参见随数据一同发布的《User’s Guide for China Meteorological Forcing Dataset》。 最新版本(01.06.0014)的主要变化有: 1. 将数据延伸到 2015 年 12 月(短波和长波数据例外,只到 2015 年 10 月,2015 年 11-12 月的数据系根据 GLDAS 数据插值得到,误差可能会偏大); 2. 设定风速最小值为 0.05 m/s; 3. 修正了之前辐射算法中的一个 bug,使我们的短波和长波数据在晨昏时段更合理。 4. 修正了降水数据的 bug,更改涉及的时段是 2011-2015 年。
阳坤, 何杰
基于静止卫星和再分析资料的中国区域大气驱动数据集是由中国气象局制备的一套具有较高时空分辨率的大气驱动数据集,空间分辨率为0.1°×0.1°,时间分辨率为1小时,覆盖范围为东经75°-135°,北纬15°-55°,包含近地面气温、相对湿度、地面气压、近地面风速、地表入射太阳辐射和地面降水率6个要素。其中降水产品的制备过程如下:利用中国风云二号静止卫星多通道数据所反演的6小时累积降水估计与常规地面观测6小时累积降水进行数据融合,获得6小时累积降水空间分布数据,然后利用静止卫星多通道反演的高分辨率云分类信息确定累积降水时间插值权重,得到1小时累积降水估计。辐射资料的制备过程如下:基于FY-2C的地表入射太阳辐射采用辐射传输模型DISORT(Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-parallel Medium)进行辐射传输计算,获得逐小时0.1°×0.1°的中国区域地表入射太阳辐射数据。其他要素的制备过程:对1.0°×1.0°的NCEP再分析资料采用空间和时间插值方法,获得逐小时0.1°×0.1°的近地面气温、相对湿度、地面气压、近地面风速等驱动要素。 各变量的物理意义: 气象要素 || 变量名 || 单位 || 物理意义 | 地面气温 || TBOT || K || 近地面(2m)气温 | 地表气压 || PSRF || Pa || 地表气压 | 地面相对湿度 || RH || kg/ kg ||近地面(2m)相对湿度 | 地面风速 || WIND || m /s ||近地面(风速仪高度)风速 | 地表入射太阳辐射|| FSDS || W /m2 || 地表入射太阳辐射 | 降水率||PRECTmms||mm/hr || 降水率 更多信息,请参见随数据一同发布的数据文档。
师春香
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件