太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。
白建辉
该数据集利用机器学习算法,生成了一套全球陆地高分辨率边界层高度数据集,时间范围为2017至2021年,其时间、空间分辨率分别为3小时和0.25º。机器学习以ERA5再分析资料和GLDAS地表参数为输入,高分辨率探空资料与ERA5获得的边界层高度之差作为输出,以此来建立训练模型。输入参量包括地形标准差、感热通量、潜热通量、向下长波辐射、向下短波辐射、总降水率、地表压强、地表温度等18个参数。无线电探空数据集包含全球370个站的约180万个剖面。总体而言,与从无线电探空仪反演得到的边界层高度相比,该数据集在时空覆盖和精度方面表现突出。该数据集对大量的科学研究和应用都有重要意义,包括空气质量、对流触发、气候和气候变化等。
郭建平, 张健, 邵佳
本数据集包含了2004-2020年东亚地区高分辨率对流层二氧化氮垂直柱浓度POMINO v2.0.1数据,为研究中国地区对流层二氧化氮的空间分布特征和时间变化趋势提供了重要的数据基础。该数据基于KNMI提供的对流层二氧化氮斜柱浓度,通过自行开发的对流层AMF反演算法,计算得到POMINO对流层二氧化氮垂直柱浓度。与地基观测资料的对比表明,POMINO的对流层二氧化氮柱浓度能够更好地抓住日际间的变化趋势,同时与地基观测数据的相关性也更好。目前该数据已被国内外多家高校以及科研机构用于科研使用,在未来,该数据集将对青藏高原科考项目提供更加全面的数据支持。
林金泰
本数据集包含了2012-2020年东亚地区高分辨率对流层二氧化氮垂直柱浓度POMINO v2.1数据,是v2.0.1错误修复后的新版本数据,为研究中国地区对流层二氧化氮的空间分布特征和时间变化趋势提供了重要的数据基础。该数据基于KNMI提供的对流层二氧化氮斜柱浓度,通过自行开发的对流层AMF反演算法,计算得到POMINO对流层二氧化氮垂直柱浓度。与地基观测资料的对比表明,POMINO的对流层二氧化氮柱浓度能够更好地抓住日际间的变化趋势,同时与地基观测数据的相关性也更好。目前该数据已被国内外多家高校以及科研机构用于科研使用,在未来,该数据集将对青藏高原科考项目提供更加全面的数据支持。
林金泰
Accurate estimation of the gross primary production (GPP) of terrestrial vegetation is vital for understanding the global carbon cycle and predicting future climate change. Multiple GPP products are currently available based on different methods, but their performances vary substantially when validated against GPP estimates from eddy covariance data. This paper provides a new GPP dataset at moderate spatial (500 m) and temporal (8-day) resolutions over the entire globe for 2000–2016. This GPP dataset is based on an improved light use efficiency theory and is driven by satellite data from MODIS and climate data from NCEP Reanalysis II. It also employs a state-of-the-art vegetation index (VI) gap-filling and smoothing algorithm and a separate treatment for C3/C4 photosynthesis pathways. All these improvements aim to solve several critical problems existing in current GPP products. With a satisfactory performance when validated against in situ GPP estimates, this dataset offers an alternative GPP estimate for regional to global carbon cycle studies.
张尧
该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1°。此外,还包括在气候驱动下(无人类干扰)的以上11个生态系统参量在2001~2018年间的时空变化。因此,该数据集可以反映气候变化与人类活动对21世纪中国陆地生产系统的影响。
陈永喆, 冯晓明, 田汉勤, 武旭同, 高镇, 冯宇, 朴世龙, 吕楠, 潘乃青, 傅伯杰
公里级、空间完整(无缝)的地表温度产品在全球变化等领域具有广泛的应用需求。基于遥感观测反演的地表温度具有较高的可信度,融合从热红外和微波观测反演的地表温度,是获取具有一定精度、空间完整地表温度的有效途径。基于这一指导思想,作者发展了反演中国区域1km、无缝地表温度的方法框架,并生成了相应的数据集(2002-2020). 首先采用基于查找表的AMSR-E/AMSR2 地表温度反演算法反演得到AMSR-E/AMSR2 地表温度,之后采用地理加权回归对AMSR-E/AMSR2 地表温度进行降尺度,得到1km 地表温度,最后使用多尺度卡尔曼滤波融合AMSR-E/AMSR2 1km地表温度和MODIS地表温度,生成1km无缝地表温度数据集。 地面验证评价结果表明,该LST的均方根误差(RMSE)约为3K,空间分布于MODIS LST、CLDAS LST的一致性较好。
程洁, 董胜越, 施建成
地表温度(Land Surface Temperature,LST)是地表能量平衡研究的关键参数,被广泛用于气象、气候、水文、农业和生态等领域研究。卫星(热红外)遥感作为获取全球和区域尺度LST信息的重要手段,容易受到云层覆盖和其他大气条件的影响,导致LST遥感产品时空不连续,极大限制了LST遥感产品在相关研究领域的应用。 本数据集的制备首先基于经验正交函数插值方法,利用Terra/Aqua MODIS 地表温度产品重建理想晴空条件下的LST,然后使用累积分布函数匹配方法融合 ERA5-Land再分析数据获取全天候条件下的LST。该方法充分利用了原始MODIS遥感产品的时空信息以及再分析数据中的云影响信息,缓解了云层覆盖对LST估算的影响,最终重建得到较高质量的全球0.05°时空连续的理想晴空和全天候LST数据集。 本数据集不仅实现了时空无缝覆盖,并且具有良好的验证精度。重建的理想晴空LST数据在全球17种土地覆盖类型实验区内,平均相关系数(R)为0.971,偏差(Bias)为-0.001 K至0.049 K,均方根误差(RMSE)为1.436 K至2.688 K。重建的全天候 LST 数据与地面站点实测数据的验证结果:平均 R 为 0.895,Bias为0.025 K 至 2.599 K, RMSE为4.503 K至7.299 K。 本数据集的时间分辨率为逐日4次,空间分辨率为0.05°,时间跨度为2002年-2020年,空间范围覆盖全球。
赵天杰, 余沛
地表太阳入射辐射(Surface Solar Irradiance,SSI)是FY-4A L2定量反演产品之一,覆盖范围为全圆盘,无投影,空间分辨率为4km,时间分辨率可达15min(20180921开始全天共40个观测时次,除每个整点时次的观测外,每3hr整点前后15min各有一次观测),光谱范围为0.2µm~5.0µm。产品输出要素包括总辐照度、水平面直接辐照度、散射辐照度,有效测量范围为0~1500 W/m2。FY-4A SSI产品在覆盖范围、空间分辨率、时间连续性、输出要素等方面质的提升为进一步开展其在太阳能、农业、生态、交通等专业气象服务中的精细化应用提供了可能。目前研究结果表明,与地基观测相比,FY-4A SSI 产品在中国地区的整体相关性在0.75以上,可用于中国地区太阳能资源评估。
申彦波, 胡玥明, 胡秀琴
地表温度(Land surface temperature, LST)是地球表面与大气之间界面的重要参量之一。它既是地表与大气能量交互作用的直接体现,又对于地气过程具有复杂的反馈作用。因此,地表温度不仅是气候变化的敏感指示因子和掌握气候变化规律的重要前提,还是众多模型的直接输入参数,在许多领域有广泛的应用,如气象气候、环境生态、水文等。伴随地学及相关领域研究的深入和精细化,学术界对卫星遥感的全天候地表温度(All-weather LST)具有迫切的需求。 本数据集的制备方法是一种基于新型地表温度时间分解模型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性,最终重建得到较高质量的全天候地表温度数据集。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。当以MODIS LST为参考时,该数据集在白天和夜间的平均偏差(MBE)为0.08K至0.16K,偏差标准差(STD)为1.12K至1.46K。基于分布于黑河流域、东北、华北和华南地区的15个站点实测数据的检验结果表明,其MBE为-0.06K至-1.17K,RMSE为1.52K至3.71K,且在晴空与非晴空条件下无显著区别。 本数据集的时间分辨率为逐日2次,空间分辨率为1km,时间跨度为2000年-2021年(注:通过外推方式将缺少Aqua MODIS LST产品时段内的全天候地表温度补齐);空间范围包括我国陆域的主要区域(包含港澳台地区,暂不包含我国南海诸岛)及周边区域(72°E-135°E,19°N-55°N)。本数据集的缩写名为TRIMS LST(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST),以便用户使用。需要说明的是,TRIMS LST的空间子集TRIMS LST-TP(中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2)同步在国家青藏高原科学数据中心发布,以减少相关用户数据下载和处理的工作量。
周纪, 张晓东, 唐文彬, 丁利荣, 马晋, 张旭
数据内容:咸海流域2015年-2018年地表温度数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD11A2产品第一波段作为地表温度数据,乘以比例因子0.02。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天,每个像元的值为八天地表温度的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它气象数据相结合分析某种植被类型的区域分布。
刘铁
本数据采用Chen et al. 2017 JHM研究的方法,利用MYD11C3.006和MOD11C3.006两种产品计算得到全天空的地表温度结果,具体计算程序见本数据集的Global_monthly_LST.m。数据格式为*.mat, Global_monthly_LST.m程序给出了实例如何读取该数据。该数据空间分辨率为0.05度,网格中心的经纬度信息分别保存在latitude.mat和Lonitud.mat,由于内陆湖泊、水体的发射率反演的问题,本数据将所有内陆湖泊和水体的地表温度给了NaN值,具体采用的mask见mask.mat文件。经过与全球156个站点观测的LST的验证,总体RMSE为2.69k,mean bias为0.4K,在干旱和半干旱地区的RMSE为2.62K, mean bias为0.94.K.
陈学龙, Bob Su, 马耀明
本数据集是一个包含34年(1983.7-2017.6)的全国高分辨率地表太阳辐射数据集,其分辨率为10公里,数据单位为W/㎡。该数据集是基于以ISCCP-HXG云产品为主要输入的全球高分辨率(3小时,10公里)地表太阳辐射数据集(1983-2017)上,通过地理加权回归方式,融合全国2261个气象台站日照时数反演的地表太阳辐射站点数据而生成的全国地表太阳辐射分布数据。验证并和其他全球卫星辐射产品比较表明,该数据集在长期趋势模拟上比GEWEX-SRB、CMSAF-CLARA-A2、ISCCP-HXG卫星辐射产品的精度要高。本数据可为陆地表面过程模拟的水文生态学的长期变化应用和研究中提供有利的数据支持。
冯飞, 王开存
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
34个关键节点百米级脆弱性评估数据集评估了“一带一路”重点区域在极端降水事件下的洪涝灾害危险性,为当地政府部门决策提供依据,同时以便在洪涝灾害发生前进行预警,从而可以争取到宝贵的时间采取防灾减灾措施,降低洪涝灾害所带来的人民群众生命财产损失。此数据集以“一带一路”34个关键节点的GDP、人口、土地利用、路网、河网数据为基础,结合ArcGIS中的空间分析方法,赋予各指标相应的权重,构建评估了34个关键节点在极端降水条件下发生洪涝灾害的脆弱性,并用自然断点法将脆弱性分为5个等级,分别代表无脆弱性,低脆弱性,中脆弱性,高脆弱性,极高脆弱性。
葛咏, 李强子, 李毅
泛第三极历史极端降水数据集包括了2000-2018年极端降水识别数据。该数据集以GPM IMERG Final Run(GPM)日值降雨数据为基础,评估了一带一路重要节点区域的降雨量,用百分位法评估了34个重要节点的极端降水阈值,并运用计算出的阈值识别出了发生极端降水的日期,以此为基础制作了极端降水发生时地表的淹没范围。 数据范围主要是泛第三极34个关键节点(万象、亚历山大、仰光、加尔各答、华沙、卡拉奇、叶卡婕琳堡、吉大港、吉布提等国家) 该数据集可以为当地政府部门决策提供依据,以便正确识别极端降水,降低极端降水所带来的生命财产损失。
何雨枫
地表温度是地表能量平衡的重要参量之一。本数据集为2019年7-9月逐月的黑河流域典型站点无人机遥感地表温度数据;飞行使用大疆M600 pro无人机搭载FLIR VUE pro热像仪,分别以湿地内的SD站、绿洲内的DM站和荒漠内的HZ站为中心,观测了地表温度获取了地表亮温图像,无人机的飞行高度约300m,热像仪的像素为336x256,图像的空间分辨率为0.4m。地表温度反演算法为改进的单通道算法,将该算法应用于无人机热红外遥感传感器获取的地表亮温数据,最终得到0.4m空间分辨率的地表温度数据。
周纪, 刘绍民, 王子卫
脆弱性是指由于系统对系统内外扰动的敏感性以及缺乏应对能力从而使系统的结构和功能容易发生改变的一种属性,即高温热浪发生时区域应对灾害以减少损失的能力。本数据集以2015年为基准年,泛第三极区域路网数据、GDP数据、医疗设施空间分布数据、植被覆盖度数据、水体分布数据为基础数据。采取欧式距离计算法明确区域内路网、水体及医疗设施的空间分布情况,并以距道路距离、距水体距离、距医疗设施距离、GDP及植被覆盖度为评价指标,采取等权重叠加法评估各节点高温热浪脆弱性。为消除单位差异性带来的影响,评估前对各指标层数据进行归一化处理,最后利用自然间断点法划分各节点脆弱性等级。
葛咏, 杨飞, 刘庆生
数据来源于美国国家环境信息中心(National Centers for Environmental Information, NCEI),该中心提供了全球范围内各站点自建站以来的气象记录,包括气温、风速、露点和降水等信息。达卡市附近有4个有记录的站点。先从NCEI下载了全球范围内站点监测数据,再根据经纬度筛选达卡市范围内的4个站点。该数据级记录了2016年1月1日-2019年12月31日的日气象站点监测数据。
葛咏, 杨飞
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件