该数据集是通过中国高分辨率对地观测中心获取了青藏工程走廊地区的高分1号卫星遥感影像资料,经过多光谱与全色波段的融合处理,得到了空间分辨率2 m的影像数据,在获取地面植被信息过程中,采用面向对象的计算机自动解译与人工目视解译相结合的分类技术,面向对象分类技术是集合邻近像元为对象来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。在实际操作中,借助 eCognition 软件对影像进行自动提取,主要过程为影像分割、信息提取和精度评价。经过与实地定点调查验证,整体提取精度大于90%。
牛富俊
中国2000-2020年去云积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为8天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。
肖鹏峰, 胡瑞, 张正, 秦棽
中国2000-2020年逐日积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为1天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。为了评估ChinaSA的反演质量,利用地面台站的观测数据提出了样方观测验证方法,验证了积雪反照率产品的精度,并与常用的四种反照率产品(GLASS、GlobAlbedo、MCD43A3和SAD)进行了精度对比。验证结果表明,ChinaSA在所有验证中精度都优于其他产品,均方根误差小于0.12,在森林区域的均方根误差能达到0.021。
肖鹏峰, 胡瑞, 张正, 秦棽
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。
宋沛林, 张永强
本数据为祁连山地区2019年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2019年祁连山全境的高分系列影像。参考数据为谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2019年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
本数据为祁连山地区2020年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2020年祁连山全境的高分系列影像。参考数据为谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2020年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
本数据集包括祁连山地区2019年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(TRIMS LST-TP),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
青藏高原念青唐古拉山地区高分辨率(5m)冰川高程变化数据集,包括该地区2000‒2013和2000‒2017两个时间段的冰川高程变化数据。具体区域为念青唐古拉山西段的纳木错地区以及东段的岗日嘎布地区,冰川边界参考国际上通用的Randolph Glacier Inventory Version 4.0(RGI 4.0)。冰川高程变化分别由高分辨率资源三号三线阵立体像对数据(ZY-3 TLA)生成的2013年和2017年DEM数据与2000年的SRTM DEM数据通过DEM差分技术得到。其中西段数据有三期:2000‒2013、2013‒2017和2000‒2017;东段数据有一期:2000‒2017。 该数据集空间分辨率为5米,单位为m a^−1,数据格式为GeoTIFF,数据类型为浮点型,投影方式:西段为 UTM 46N,东段为UTM 47N。 该数据与现有的物质平衡实测数据及其它遥感观测的结果具有较好的一致性,但具有更高空间分辨率,可提供更详细的冰川高程变化的空间分布细节,将冰川高程变化乘以冰川的平均密度(通常为850±60 kg m^−3)即可转化为相应时间段内的冰川物质平衡 (单位为:w.e. a^−1),可为该地区冰川高程变化和物质平衡的研究提供数据支撑。
任少亭, 贾立
青藏高原是世界上最大的高、低纬度多年冻土带,近几十年来,其多年冻土带迅速退化,其最显著的特征之一就是热融湖塘的形成。这样的湖泊由于能够调节碳循环、水和能量通量而引起了极大的关注。然而,这一地区的热融湖塘的分布在很大程度上仍不为人所知,这阻碍了我们对多年冻土的响应及其碳反馈对气候变化的理解。本数据集基于200余景Sentinel-2A影像,结合ArcGIS、NDWI和Google Earth Engine平台,通过GEE自动提取和人工目视解译的方法提提取青藏高原多年冻土区内热融湖塘边界。在2018年热融湖塘数据集中,青藏高原多年冻土区共有121,758个热融湖塘,面积为0.00035-0.5 km²,总面积为1730 km² 。本次热融湖塘编目数据集为青藏高原水资源评价、多年冻土退化评价、热喀斯特研究提供了基础数据。
陈旭, 牟翠翠, 贾麟, 李志龙, 范成彦, 母梅, 彭小清, 吴晓东
本数据集包括祁连山地区2018年日值0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
数据集包括2015年11月27日- 2016年3月26日阿勒泰基站(lon:88.07, lon: 44.73)地面被动微波亮温、多角度亮温、10分钟四分量辐射和雪温、雪坑日观测数据和逐时气象数据。 日雪坑参数包括:积雪分层、分层厚度、密度、粒度、温度。 这些数据存储在5个NetCDF文件中,TBdata.nc, TBdata-multiangle.nc, Ten-minute 4 component radiation and snow temperature.nc, Hourly meteorological and soil data.nc and Daily snow pit data.nc,以及readme.doc。 TBdata.nc 为六通道双偏振微波辐射计RPG-6CH-DP自动采集的两偏振三个通道的亮度温度。内容包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 TBdata-multiangle.nc为两种极化的3个通道的7组多角度亮度温度。 包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 The ten-minute 4 component radiation and snow temperature. nc 为4组分辐射和层状雪温度。 内容包括:年、月、日、时、分、SR_DOWN、SR_UP、LR_DOWN、LR_UP、T_Sensor、ST_0cm、ST_5cm、ST_15cm、ST_25cm、ST_35cm、ST_45cm、ST_55cm。 The hourly meteorological and soil data.nc为每小时天气数据和分层土壤数据。内容包括年、月、日、时、Tair、Wair、Pair、Win、SM_10cm、SM_20cm、Tsoil_5cm、Tsoil_10cm、tsoil_15cm、Tsoil_20cm。 The daily snow pit data.nc为人工雪坑数据。观测时间为当地时间上午8:00-10:100。内容包括年、月、日、雪深、thickness_layer1、thickness_layer2、thickness_layer4、thickness_layer5、thickness_layer6、Long_layer1、Short_layer1、Long_layer2、Short_layer2、Long_layer3、Short_layer4、Long_layer5、Short_layer5、Long_layer6、short_layer6、Stube、snow shovel_0-10、 雪铲_10-20、雪铲_20-30、雪铲_30-40、雪铲_40-50、雪叉_10、雪叉_15、雪叉_20、雪叉_25、雪叉_30、雪叉_35、雪叉_40、雪叉_45、雪叉_50、形状1、形状2、形状3、形状4、形状5。
戴礼云
Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).
Sher Muhammad
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
使用Sentine-1 SAR 数据对青藏高原黑河流域野牛沟冻土进行监测。采用2014~2018年野牛沟区域Sentine-1 SAR影像,利用了基于分布式雷达目标的小基线集时序InSAR(DSs-SBAS)冻土形变监测方法,结合SAR后向散射系数,MODIS地表温度和Stefan模型,估算了研究区活动层厚度。结果表明活动层厚度在0.8米至6.6米之间,平均值约为3.3米。对开展大范围、高分辨监测具有十分重要的意义。
江利明
全球气候变暖及人类活动导致青藏高原大面积冻土退化、热融滑塌等问题,严重影响了多年冻土区工程建设和生态环境。以青藏高原黑河流域俄博岭的冻土为研究区,基于高分辨率卫星影像,利用机器学习面向对象分类技术提取研究区内热融滑塌信息,结果表明2009年至2019年研究区热融滑塌数量从12条增至16条,总面积由14718.9平方米增至28579.5平方米,增加了近两倍。高空间分辨率遥感与面向对象分类方法相结合在冻土热融滑塌监测中具有广阔的应用前景。
江利明
本数据集包括祁连山地区2017年日值0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周济-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包括祁连山地区2005年、2010年、2015年月0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包括祁连山地区2002年6月19日至2018年12月30日SMAP时间扩展日0.25°×0.25°地表土壤水分产品。采用随机森林方法,利用AMSR-E和AMSR2 6.925 GHz V/H,10.65 GHz V/H及36.5 GHz V五个通道的亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包括祁连山地区1980、1985、1990、1995和2000年SMAP时间扩展月值0.25°×0.25°地表土壤水分产品。采用随机森林方法,利用SMMR,SSM/I和SSMIS 19 GHz V/H及37 GHz V三个通道的亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件